如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是AC,BC的中点,点P从点A出发沿折线段AD-DE-EB以每
如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是AC,BC的中点,点P从点A出发沿折线段AD-DE-EB以每秒3个单位长的速度向B匀速运动;点Q也从...
如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是AC,BC的中点,点P从点A出发沿折线段AD-DE-EB以每秒3个单位长的速度向B匀速运动;点Q也从点A出发沿射线AB以每秒2个单位长的速度运动,当P与B重合时停止运动,点Q也随之停止运动.设点P,Q运动时间是t秒(t>0).(1)当点P到达终点B时,求t的值;(2)设△BPQ的面积为S,求出Q在线段AB上运动时,S与t的函数关系式;(3)是否存在t值,使PQ∥DB?若存在,求出t值,不存在说明理由.
展开
展开全部
(1)已知Rt△ABC中,∠A=90°,AB=6,AC=8,
由勾股定理得:BC=
=
=10,
又由D,E分别是AC,BC的中点,
∴AD=4,DE=3,BE=5,
∴当点P到达终点B时所用时间t=(4+3+5)÷3=4(秒),
答t的值为4秒.
(2)①如图,当点P在AD上(不包含D点),由已知得:AQ=2t,AP=3t,
∴BQ=AB-AQ=6-2t,
已知∠A=90°,
∴△BPQ的面积S=
BQ?AP=
(6-2t)?3t=-3t2+9t,
所以Q在线段AB上运动时,S与t的函数关系式为S=-3t2+9t.
②如图当点P在DE(包括点D、E)上,
过点P作PF⊥AB于F,
则PF=AD=4,
则△BPQ的面积S=
BQ?PF=
(6-2t)?4=12-4t,
所以此时Q在线段AB上运动时,S与t的函数关系式为S=12-4t.
③当点P在BE上(不包括E点),
由已知得:BP=3+4+5-3t=12-3t,
过点P作PF⊥AB于F,
∴PF∥AC,
∴△BPF∽△BCA,
∴
=
,
∴
=
,
∴PF=
,
∴△BPQ的面积S=
BQ?PF=
(6-2t)?
=
t2-
t+
,
所以此时Q在线段AB上运动时,S与t的函数关系式为S=
t2-
由勾股定理得:BC=
AB2+AC2 |
62+82 |
又由D,E分别是AC,BC的中点,
∴AD=4,DE=3,BE=5,
∴当点P到达终点B时所用时间t=(4+3+5)÷3=4(秒),
答t的值为4秒.
(2)①如图,当点P在AD上(不包含D点),由已知得:AQ=2t,AP=3t,
∴BQ=AB-AQ=6-2t,
已知∠A=90°,
∴△BPQ的面积S=
1 |
2 |
1 |
2 |
所以Q在线段AB上运动时,S与t的函数关系式为S=-3t2+9t.
②如图当点P在DE(包括点D、E)上,
过点P作PF⊥AB于F,
则PF=AD=4,
则△BPQ的面积S=
1 |
2 |
1 |
2 |
所以此时Q在线段AB上运动时,S与t的函数关系式为S=12-4t.
③当点P在BE上(不包括E点),
由已知得:BP=3+4+5-3t=12-3t,
过点P作PF⊥AB于F,
∴PF∥AC,
∴△BPF∽△BCA,
∴
PF |
AC |
BP |
BC |
∴
PF |
8 |
12?3t |
10 |
∴PF=
48?12t |
5 |
∴△BPQ的面积S=
1 |
2 |
1 |
2 |
48?12t |
5 |
12 |
5 |
84 |
5 |
144 |
5 |
所以此时Q在线段AB上运动时,S与t的函数关系式为S=
12 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|