若定义在R上的奇函数f(x)的图象关于直线x=1对称,且当0<x≤1时,f(x)=log3x,则方程f(x)+4=f(0)
若定义在R上的奇函数f(x)的图象关于直线x=1对称,且当0<x≤1时,f(x)=log3x,则方程f(x)+4=f(0)在区间(0,10)内的所有实根之和为()A.28...
若定义在R上的奇函数f(x)的图象关于直线x=1对称,且当0<x≤1时,f(x)=log3x,则方程f(x)+4=f(0)在区间(0,10)内的所有实根之和为( )A.28B.30C.32D.34
展开
1个回答
展开全部
∵函数y=f(x)的图象关于直线x=1对称,
∴f(2-x)=f(x),又y=f(x)为奇函数,
∴f(x+2)=f(-x)=-f(x),
∴f(x+4)=-f(x+2)=f(x),即f(x)的周期为4,
又定义在R上的奇函数,故f(0)=0,
∵f(x)+4=f(0),
∴f(x)=-4+f(0)=-4,
∵0<x≤1时,f(x)=log3x≤0,
∴f(x)=-4在(0,1)内有一实根x1,又函数f(x)的图象关于直线x=1对称,
∴f(x)=-4在(1,2)有一个实根x2,且x1+x2=2;
∵f(x)的周期为4,
∴f(x)在(4,5),(5,6)上各有一个实根x3、x4,x3+x4=10;在(8,9),(9,10)各有一个实根x5,x6,x5+x6=18;
∴原方程在区间(0,10)内的所有实根之和为30.
故选B.
∴f(2-x)=f(x),又y=f(x)为奇函数,
∴f(x+2)=f(-x)=-f(x),
∴f(x+4)=-f(x+2)=f(x),即f(x)的周期为4,
又定义在R上的奇函数,故f(0)=0,
∵f(x)+4=f(0),
∴f(x)=-4+f(0)=-4,
∵0<x≤1时,f(x)=log3x≤0,
∴f(x)=-4在(0,1)内有一实根x1,又函数f(x)的图象关于直线x=1对称,
∴f(x)=-4在(1,2)有一个实根x2,且x1+x2=2;
∵f(x)的周期为4,
∴f(x)在(4,5),(5,6)上各有一个实根x3、x4,x3+x4=10;在(8,9),(9,10)各有一个实根x5,x6,x5+x6=18;
∴原方程在区间(0,10)内的所有实根之和为30.
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询