如何解释“充分性”和“必要性”?
如果命题p能推出q,则p是q的充分条件,q就是p的必要条件。如果说p的充要条件是q,那么充分性就是要证q是p充分条件这一方面即q到p这一方向,反之必要向就是指p的必要条件是q,即p到q这一方向。
假设A是条件,B是结论:
(1)由A可以推出B,由B可以推出A,则A是B的充要条件(A=B)
(2)由A可以推出B,由B不可以推出A,则A是B的充分不必要条件(A⊆B)
(3)由A不可以推出B,由B可以推出A,则A是B的必要不充分条件(B⊆A)
(4)由A不可以推出B,由B不可以推出A,则A是B的既不充分也不必要条件(A¢B且B¢A)
扩展资料:
简单地说,不满足A,必然不满足B(即,满足A,未必满足B),则A是B的必要条件。例如:
1. A=“地面潮湿”;B=“下雨了”。
2. A=“认识26个字母”;B=“能看懂英文”。
3. A=“听过京剧”;B=“能体会到京剧的美”。
例子中A都是B的必要条件,确切地说,A是B的必要而不充分的条件:其一、A是B发生必需的;其二,A不必然导致B。在例子中,地面潮湿不一定就是下雨了;认识了26个字母不一定就能看懂英文;听过京剧未必能体会到京剧的美,这说明A不必然导致B。
参考资料来源:百度百科——必要条件
参考资料来源:百度百科——充分条件
如果命题p能推出q,则p是q的充分条件,q就是p的必要条件。如果说p的充要条件是q,那么充分性就是要证q是p充分条件这一方面即q到p这一方向,反之必要向就是指p的必要条件是q,即p到q这一方向。
详细解释:
1)命题是由条件和结论组成的
2)必要性和充分性是描述命题的
证必要性即证条件能推出结论
证充分性即证明结论能推出条件
3)充分条件、必要条件是描述条件的
假如命题A为条件,B为结论
若发生A推出B,则称A这个条件叫充分条件,是B的充分条件
若发生结论推出条件,则称A为必要条件,是结论B的必要条件
介绍了判定充分性和必要性的三种方法:定义法、集合法以及等价法!每一种方法都要掌握哦!否则在解题中就会碰到障碍!