tanx在(0,π/2)上的定积分是多少

 我来答
帐号已注销
2021-09-02 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

这个是不可积的,tanx的原函数是-lncosx +C,而该函数在x趋于无穷大时不收敛。

令sint=2^(1/2)*sinx则t∈[0,π/2] costdt=2^(1/2)cosxdx

dx=2^(1/2)*1/2*costdt/[1-1/2*(sint)^2]^(1/2)

原积分=2^(1/2)*∫(cost)^2/dt/[1-1/2*(sint)^2]^(1/2) 有积分区间[0,π/2]

=2*2^(1/2)*∫[1-1/2*(sint)^2]^(1/2)dt - 2^(1/2)*∫dt/[1-1/2*(sint)^2]^(1/2)

=-2^(1/2)*K(1/2*2^(1/2))+2*2^(1/2)*E(1/2*2^(1/2))

注:K(k),E(k)为第一,二类完全椭圆积分,为未定无理数。

含义

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

基拉的祷告hyj
高粉答主

2019-09-08 · 科技优质答主
个人认证用户
基拉的祷告hyj
采纳数:7226 获赞数:8158

向TA提问 私信TA
展开全部



希望有所帮助

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
arongustc
科技发烧友

2019-09-08 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:6018万
展开全部
这个是不可积的,tanx的原函数是-lncosx +C,而该函数在x趋于无穷大时不收敛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式