数学书:已知圆C:(x-1)^2+(y-2)^2=25,......

已知圆C:(x-1)^2+(y-2)^2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.判断直线l被圆C截得的弦何时最长、何时最短?并求截得的弦长最短时m的值... 已知圆C:(x-1)^2+(y-2)^2=25,直线l:(2m+1)x+(m+1)y-7m-4=0. 判断直线l被圆C截得的弦何时最长、何时最短? 并求截得的弦长最短时m的值以及最短长度。 详细解释,谢谢, 展开
 我来答
北凌简蕴涵
2020-04-23 · TA获得超过3596个赞
知道大有可为答主
回答量:3089
采纳率:31%
帮助的人:172万
展开全部
maluyao69,您好
根据点到直线距离公式得圆心(1,2)到直线L的距离d=((2m+1)*1+(m+1)*2-7m-4)/√((2m+1)^2+(m+1)^2)=|3m+1|/√(5m^2+6m+2)=√(9m^2+6m+1)/(5m^2+6m+2)
原题义转化为求f(m)=(9m^2+6m+1)/(5m^2+6m+2)在m属于R上的最大值...
到这里已经很难算了,之后再求导,令导数大于零求最大值吧...
求出最大值后和圆半径5用勾股定理求出所截线段的最短长度的一半,再乘以2得最终答案.
一般思路应该是这样的.....
但我后来想了下这道题应该是有简单方法,通过观察直线方程可知直线L:(2m+1)x+(m+1)y-7m-4=0恒过点(3,1),而点(3,1)又绝对在圆C内,所以圆心到点(3,1)的距离为上过程所求的d的最大值,即√(1-3)^2+(2-1)^2=√5,所以所截线段最短长度为2*√(5^2-5)=4√5
解答完毕,望笑纳,谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式