x趋于0,ax(1-cosx)+b(x-sinx)与x^5等价无穷小,求a,b的值?
x->0
cosx =1-(1/2)x^2 +(1/24)x^4 +o(x^4)
1-cosx =(1/2)x^2 -(1/24)x^4 +o(x^4)
ax(1-cosx) =(1/2)ax^3 -(1/24)ax^5 +o(x^5)
sinx = x-(1/6)x^3 +(1/120)x^5 +o(x^5)
x-sinx = (1/6)x^3 -(1/120)x^5 +o(x^5)
b(x-sinx) =(1/6)bx^3 -(1/120)bx^5 +o(x^5)
ax(1-cosx) -b(x-sinx) =[(1/2)a -(1/6)b]x^3 +[ -(1/24)a +(1/120)b]x^5 +o(x^5)
ax(1-cosx)+b(x-sinx)与x^5等价无穷小
=>
(1/2)a -(1/6)b =0 (1) and
-(1/24)a +(1/120)b =1 (2)
20(2) +(1)
(-5/6 + 1/2)a =20
-(1/3)a =20
a=-60
from (1)
(1/2)a -(1/6)b =0
-30 -(1/6)b =0
b= -180
(a,b)=(-60, -180)