同余数学问题

 我来答
WskTuuYtyh
2018-11-24 · TA获得超过1万个赞
知道大有可为答主
回答量:3148
采纳率:84%
帮助的人:1325万
展开全部
题目转述:
试解释同余式为什么写成下面的形式。
418×814×1616≡2×8×4≡64≡12(mod13)
答:
为打字方便,以下用双等号代替三线等号。即用==表示同余号≡
同余的性质:
性质0
a=b, 则对于任意模m,有 a==b mod m
性质1
a==b mod m, 则b==a mod m.
性质2
a=A mod m, b=B mod m, 则a*b=A*B mod m
性质3
a==b mod m, b==c mod m,则a==c mod m。也可以直接写成a==b==c mod m.

下面我们来解释原题中提到的例子。
因为
418==28==2 mod 13
814==34==8 mod 13
1616==316==56==4 mod 13
(以上3行用到性质3)

418*814*1616==2*8*4 (此处用到性质2),
接着写 = 64 或 ==64都行 (这里是乘法运算结果或性质0)
剩下就好说了。
于是原式可写成
418*814*1616==2*8*4=64==12 mod 13

418*814*1616==2*8*4==64==12 mod 13
这里的mod 13只写一次,其中涉及到的模 一直都是13, 故中间均作了省略。
写成
418*814*1616 mod 13==2*8*4 mod 13=64 mod 13==12 mod 13
更严格,只是我们约定省去了相同的项罢了。

外一则:
事实上, mod m 实际就是相当于一个代数和项附加到连等号的各个平行加项之上,并且可以附加到至少一个、至多所有加项的意思。
例如 x==1 mod 2, 相当于 x=1 +2t
相当于 x+2a =1+2b
注意这里的加号实际是代数和,因为并不规定整数a,b的符号,并且加号也可以改成减号而不影响实质;并且加法可以具有交换性与结合性。
因此,我提议将x==1 mod 2形式地写成x==1 ,这样会用更简洁的形式表现出同余概念的最本质的内容。
x==1,同时也是x==1, 同时也是x==1, 也是x==1,也是
x==1, x=1,x==1, x=1,
总之相当于一个2的任意倍数,与==两侧的一个或多个平行加项作任意的加减结合,而不影响运算的本质。

外一则:不提倡使用[2],{2}因为常用来表示取整函数和取非整数部分;不使用(),因为太常用了。提倡使用尖括号,在不与比较符号相混淆的情况下使用。或者,还可使用新的其他符号,注意匹配呼应即可。

外一则:
1+2t,
当t=2n时即是1+4t;
当1=2n+1时即时3+4t

1==1或3
西域牛仔王4672747
2018-11-23 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30557 获赞数:146233
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
1、100-5=95,195-5=190,
95 与 190 的最大公约数是 95,
95=5×19,所以这个数可能是 19 和 95。
2、1992×59≡(284×7+4)×(8×7+3)
≡4×3≡12≡5(mod 7),也即余数是 5。
3、2461×135×6047
≡(223×11+8)×(12×11+3)×(549×11+8)
≡8×3×8
≡(2×11+2)×8
≡2×8
≡16
≡5(mod 11),也即余数为 5。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
弓长柒柒
2018-11-23 · TA获得超过1131个赞
知道小有建树答主
回答量:1117
采纳率:0%
帮助的人:203万
展开全部
3905和7805
更多追问追答
追答
余数是4
余数是5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hb7158
2018-11-23 · TA获得超过1.8万个赞
知道大有可为答主
回答量:2.3万
采纳率:75%
帮助的人:1907万
展开全部
19505 39005
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式