概率论问题
一本500页的书共有500个错误,每个错误等可能地出现在每一页上(每一页的印刷符号超过500个)。试求指定的一页上至少有三个错误的概率...
一本500页的书共有500个错误,每个错误等可能地出现在每一页上(每一页的印刷符号超过500个)。试求指定的一页上至少有三个错误的概率
展开
1个回答
展开全部
首先因为错误出现在任何一页上是等可能的,所以任何一个错误出现的概率都是1/500
对于指定的一页,500个错误中的任何一个错误,在该页上只有出现和不出现两种情形,而出现的概率是1/500,于是可以判定这是一个n=500的n重伯努利试验,服从于二项分布
又因为n=500是个足够大的数,于是根据二项分布中心极限定理,
可知它趋近于正态分布X~N(期望,方差),并且 期望=np=500*1/500=1
方差=npq=500*1/500*499/500
=499/500
于是X~N(1,499/500)
至少有三个错误的概率就是
P=P{X》3}=1-P{X《3}
但是这时你不能直接计算,必须将X的非标准正态分布转化为标准正态分布,于是有
p=1-标准正态((x-期望)/方差平方根)
=1-标准正态((3-1)/(499/500的平方根))
约等于=1-标准正态(2)
=1-0.9772
=0.0228
由此可见这是个概率较小的事件,由于是在网吧回答你的问题,没有计算工具,在计算中我直接认为499/500的平方根约等于1,这可能使结果略有偏差
但这道题的解题思路应该是正确的
对于指定的一页,500个错误中的任何一个错误,在该页上只有出现和不出现两种情形,而出现的概率是1/500,于是可以判定这是一个n=500的n重伯努利试验,服从于二项分布
又因为n=500是个足够大的数,于是根据二项分布中心极限定理,
可知它趋近于正态分布X~N(期望,方差),并且 期望=np=500*1/500=1
方差=npq=500*1/500*499/500
=499/500
于是X~N(1,499/500)
至少有三个错误的概率就是
P=P{X》3}=1-P{X《3}
但是这时你不能直接计算,必须将X的非标准正态分布转化为标准正态分布,于是有
p=1-标准正态((x-期望)/方差平方根)
=1-标准正态((3-1)/(499/500的平方根))
约等于=1-标准正态(2)
=1-0.9772
=0.0228
由此可见这是个概率较小的事件,由于是在网吧回答你的问题,没有计算工具,在计算中我直接认为499/500的平方根约等于1,这可能使结果略有偏差
但这道题的解题思路应该是正确的
绿知洲
2024-11-13 广告
2024-11-13 广告
交通噪声预测计算主要依据车辆类型、平均辐射声级、交通量、行驶速度、距离衰减量、公路纵坡和路面等因素。预测时,需先确定各参数,如车型分类、平均行驶速度、噪声源强等。通过公式计算,可得出预测点接收到的交通噪声值。预测过程还需考虑几何发散、大气吸...
点击进入详情页
本回答由绿知洲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询