矩阵的秩8个性质通俗证明

 我来答
数码王子胖
高粉答主

2020-11-05 · 专注于电子产品,数码产品相关类型。
数码王子胖
采纳数:5273 获赞数:16701

向TA提问 私信TA
展开全部
矩阵的秩是反映矩阵固有特性的一个重要概念。

设A是一组向量,定义A的最大无关组中向量的个数为A的秩。

定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。

定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A

的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:

若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。

由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。

例1. 计算下面矩阵的秩,

而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所

有的三阶子式全为零,所以rA=2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式