微分方程在数学建模中的应用

 我来答
顺顺百科课堂
2023-05-08 · TA获得超过800个赞
知道大有可为答主
回答量:6463
采纳率:100%
帮助的人:251万
展开全部

微分方程在数学建模中的应用如下:

首先,建立数学模型,根据问题的目的、要求具体分析做出相应的简化和假设;然后按照规律列出微分方程,求出方程的解;最后将实际对象带入结果中,对问题进行描述、分析、预测和控制。

由于自然资源、环境条件等因素对人口的增长起着阻滞作用,并且随着人口的增加,阻滞作用越来越大,因此人口增长到一定数量后增长率会下降。

阻滞作用体现在对人口增长率的影响上,使得随着人口数量的增加而下降。若将表示为的函数,则它应是减函数,于是方程(2.2)改写为(2.7)。对的一个最简单的假设是,设为的线性减函数,即(2.8)。

这里称为固有增长率,表示人口很少时(理论上是)的增长率。为了确定系数的意义,引入自然资源和环境条件所能容纳的最大人口数量,称为人口容量。

思考方法:

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家变成物理学家、生物学家、经济学家甚至心理学家等等的过程。

数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。

要描述一个实际现象可以有很多种方式,比如录音、录像、比喻、传言等等。为了使描述更具科学性、逻辑性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式