1个回答
展开全部
这个不好说,最好看书,简单提下吧
f'(x)>0则f(x)递增,f'(x)<0则递减
极值点是函数增减性发生改变的点,即f'(x)的正负发生变化的点。
(必要条件)对于可导函数来说f'(x0)=0是x=x0是极值点的必要条件。
一般f'(x)=0的根称为零点(驻点)
若f'(x0)=0,f'(x0)≠0,可以根据f''(x0)的符号判断极值点的性质即该点是极大值还是极小值(充分条件)
若f''(x0)>0,f(x0)为极小值
若f''(x0)<0,则f(x0)为极大值。
y=f''(x)的符号从几何上表示了函数的凸凹性质。
定理:y=f''(x)>0等价于f((x1+x2)/2))<=(1/2)[f(x1)+f(x2)],且y=f(x)为该区间的凹函数。等号当且仅当x1=x2时成立。
类似有y=f''(x)>0等价于f((x1+x2)/2))>=(1/2)[f(x1)+f(x2)],且y=f(x)为该区间的凸函数。等号当且仅当x1=x2时成立
实际上这是琴生(JESEN)不等式。
f'(x)>0则f(x)递增,f'(x)<0则递减
极值点是函数增减性发生改变的点,即f'(x)的正负发生变化的点。
(必要条件)对于可导函数来说f'(x0)=0是x=x0是极值点的必要条件。
一般f'(x)=0的根称为零点(驻点)
若f'(x0)=0,f'(x0)≠0,可以根据f''(x0)的符号判断极值点的性质即该点是极大值还是极小值(充分条件)
若f''(x0)>0,f(x0)为极小值
若f''(x0)<0,则f(x0)为极大值。
y=f''(x)的符号从几何上表示了函数的凸凹性质。
定理:y=f''(x)>0等价于f((x1+x2)/2))<=(1/2)[f(x1)+f(x2)],且y=f(x)为该区间的凹函数。等号当且仅当x1=x2时成立。
类似有y=f''(x)>0等价于f((x1+x2)/2))>=(1/2)[f(x1)+f(x2)],且y=f(x)为该区间的凸函数。等号当且仅当x1=x2时成立
实际上这是琴生(JESEN)不等式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询