一道数学题。在一次国际象棋比赛中,每个选手都要与其他选手赛一局,得分规则是:每局赢者记2分
一道数学题!在一次国际象棋比赛中,每个选手都要与其他选手赛一局,得分规则是:每局赢者记2分,输者记0分,如果是平局,每个选手各记1分。现在有四个同学统计了比赛中选手的得分...
一道数学题!在一次国际象棋比赛中,每个选手都要与其他选手赛一局,得分规则是:每局赢者记2分,输者记0分,如果是平局,每个选手各记1分。现在有四个同学统计了比赛中选手的得分总和,他们的结果分别是:1979,1980,1984,1985,经核实有一位同学统计无误。通过以上数据,你能算出这次比赛一共有多少名选手参加吗?试试看!
拜托了! 展开
拜托了! 展开
展开全部
假设有N个选手参加比赛
根据排列组合总共比赛场数为N(N-1)/2
根据比赛规则,赢者记2分,输者记零分,平局各记1分,也就是说每比一场可以产生2分
最终选手得分总和公式为N(N-1)
因为奇数*偶数=偶数
所以排除1979和1985两个结果
N(N-1)=1980或N(N-1)=1984
因为N为整数,最后解出N=45人
根据排列组合总共比赛场数为N(N-1)/2
根据比赛规则,赢者记2分,输者记零分,平局各记1分,也就是说每比一场可以产生2分
最终选手得分总和公式为N(N-1)
因为奇数*偶数=偶数
所以排除1979和1985两个结果
N(N-1)=1980或N(N-1)=1984
因为N为整数,最后解出N=45人
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设有n个人,总赛数=n*(n-1)/2,可知分数一定能被2整除,故1980或1984无误,
n*(n-1)=1980:n=45
n*(n-1)=1984:没有满足n为整数的解
n*(n-1)=1980:n=45
n*(n-1)=1984:没有满足n为整数的解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
若有X人参加,任意两人赛一场,则要赛X(X-1)/2场,每场不论结局都是两分,所以共积X(X-1)分,而只有1980=44*45,所以有四十五人,得四十四的差一点就对了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题有漏洞,比赛规则不全,如果是输者淘汰制度,那平了算什么?我打个比方,比如就两人参赛,下了990盘都是平局,正好是1980分,如果是下了992盘就是1984分。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
明显奇数的不对。所以排除1979,1985。分数除以2是比赛的场次数,即940场或942场,场次数计算方法:n(n+1)/2=940或942,n为整数.经测试,n=44。即1980为正确,有44人参加
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询