高中数学!设函数f(x)=loga|x|在(-无限大,0)上单调递增,则f(a+1)与f(2)的大小关系是.__
问题如题目所示.麻烦详细解答.还有个问题,设偶函数f(x)=loga|x-b|在(-∞,0)上递增,则f(a+1)与f(b+2)的大小为()A,f(a+1)=f(b+2)...
问题如题目所示.
麻烦详细解答.
还有个问题,
设偶函数f(x)=loga|x-b|在(-∞,0)上递增,则f(a+1)与f(b+2)的大小为()
A,f(a+1)=f(b+2)
B,f(a+1)>f(b+2)
C,f(a+1)<f(b+2)
D,不确定
情况一、当0<a<1时,丨x-b丨在(负无穷,0)递减;
二、以及当a>1时,丨x-b丨在(负无穷,0)递增;
第一种,又因为丨x-b丨在(负无穷,b)时为递减,则知b>=0;
又因为f(x)为偶函数,即有f(-x)=f(x),解得b=0;
f(a+1)=loga(丨a-b+1丨)=loga(丨a+1丨),f(b+2)=loga(2);
因为0<a<1,所以<1丨a+1丨<2;
所以f(a+1)>f(b+2)。
这题是别人提问的,莪看不懂.
为什么考虑0<a<1。增函数的话不是就是a>1么? 展开
麻烦详细解答.
还有个问题,
设偶函数f(x)=loga|x-b|在(-∞,0)上递增,则f(a+1)与f(b+2)的大小为()
A,f(a+1)=f(b+2)
B,f(a+1)>f(b+2)
C,f(a+1)<f(b+2)
D,不确定
情况一、当0<a<1时,丨x-b丨在(负无穷,0)递减;
二、以及当a>1时,丨x-b丨在(负无穷,0)递增;
第一种,又因为丨x-b丨在(负无穷,b)时为递减,则知b>=0;
又因为f(x)为偶函数,即有f(-x)=f(x),解得b=0;
f(a+1)=loga(丨a-b+1丨)=loga(丨a+1丨),f(b+2)=loga(2);
因为0<a<1,所以<1丨a+1丨<2;
所以f(a+1)>f(b+2)。
这题是别人提问的,莪看不懂.
为什么考虑0<a<1。增函数的话不是就是a>1么? 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询