底数和幂是什么?
2022-12-02 · 百度认证:北京惠企网络技术有限公司官方账号
1、底数,数学术语,指幂(n^m)中的n,或者对数(x=logaN)中的 a(a>0且a不等于1)。
比如9=3²中,底数为3;3=log2 8中,底数为2。
2、幂(power)指乘方运算的结果。n^m指该式意义为m个n相乘。把n^m看作乘方的结果,叫做n的m次幂。比如16=4²中,即为4的2次幂。
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的。
故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
幂不符合结合律和交换律。因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用。
扩展资料:
幂的大小比较法:
1、计算比较法
先通过幂的计算,然后根据结果的大小,来进行比较的。
2、底数比较法
在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
3、指数比较法
在底数相同的情况下,通过比较指数的大小,来确定两个幂的大小。
4、求差比较法
将两个幂相减,根据其差与0的比较情况,来确定两个幂的大小。
5、求商比较法
将两个幂相除,然后通过商与1的大小关系,比较两个幂的大小。
6、乘方比较法
将两个幂乘方后化为同指数幂,通过进行比较结果,来确定两个幂的大小。
7、定值比较法
通过选一个与两个幂中一个幂相接近的幂作定值,然后用两个幂与所选取的定值相比较,由此来确定两个幂的大小。
参考资料:
1、底数,数学术语,指幂(n^m)中的n,或者对数(x=logaN)中的 a(a>0且a不等于1)。
比如9=3²中,底数为3;3=log2 8中,底数为2。
2、同底数是相同的底数
3、同底数幂是指底数相同的幂。同底数幂之间共有5条计算性质,对正指数幂和负指数幂均适用。
扩展资料
数幂计算
1、乘法
(1)同底数幂相乘,底数不变,指数相加: a^m×a^n=a^(m+n))(m、n都是整数) 。即幂的乘方,底数不变,指数相加。
如a^5·a^2=a^(5+2)=a^7 。如a的负二次方乘a的负三次方等于a的负五次方。a的0次方乘a的0次方等于a的0次方。
(如不是同底数,应先变成同底数,注意符号)
(2)1·同底数幂是指底数相同的幂。
如(-2)的二次方与(-2)的五次方
2、除法
同底数幂相除,底数不变,指数相减: a^m÷a^n=a^(m-n)(m、n都是整数且a≠0)。
如a^5÷a^2=a^(5-2)=a^3 ,说明:a^m是a的m次方,a^n是a的n次方,a^(m+n)是a的m+n 次方,a^(m-n)是a的m-n 次方。
一般形式
负整数指数幂的一般形式是a^(-n)( a≠0,n为正整数)
意义
负整数指数幂的意义为:
任何不为零的数的 -n(n为正整数)次幂等于这个数n次幂的倒数
即 a^(-n)=1/(a^n)
0指数幂
任意非0实数的0次幂等于1。
负实数指数幂
负实数指数幂的一般形式是a^(-p) =1/(a) ^p或(1/a)^p(a≠0,p为正实数)
证明:a^(-n)=a^(0-n)=a^0/a^n,因a^0=1,故a^(-n)=a^(0-n)=1/a^n,(a≠0,p为正实数)
引入负指数幂后,正整数指数幂的运算性质(①~⑤)仍然适用:
(a^m)·(a^n)= a^(m+n) ①
即同底数幂相乘,底数不变,指数相加。
(a^m)^n = a^(mn) ②
即幂的乘方,底数不变,指数相乘。
(ab)^n=(a^n)(b^n) ③
即积的乘方,将各个因式分别乘方。
(a^m)÷(a^n)=a^(m-n) ④
即同底数幂相除,底数不变,指数相减。
(a/b)^n=(a^n)/(b^n) ⑤
即分式乘方,将分子和分母分别乘方。