2个回答
展开全部
an=3^(n-1)+a(n-1) 两边同除以3^(n-1)
3an/3^n=1+a(n-1)/3^(n-1)
3(an/3^n-1/2)=[a(n-1)/3^(n-1)-1/2]
(an/3^n)/[a(n-1)/3^(n-1)-1/2]=1/3
所以{an/3^n-1/2}是以a1/3-1/2=-1/6为首相q=1/3为公比的等比数列
an/3^n-1/2=(-1/6)(1/3)^(n-1)
an/3^n=1/2-(1/6)(1/3)^(n-1)
=1/2-(1/6)(1/3)^(n-1)
=1/2-(1/2)(1/3)^n
=[1-(1/3)^n]/2
=[1-3^(-n)]/2
即an=(3^n-1)/2
3an/3^n=1+a(n-1)/3^(n-1)
3(an/3^n-1/2)=[a(n-1)/3^(n-1)-1/2]
(an/3^n)/[a(n-1)/3^(n-1)-1/2]=1/3
所以{an/3^n-1/2}是以a1/3-1/2=-1/6为首相q=1/3为公比的等比数列
an/3^n-1/2=(-1/6)(1/3)^(n-1)
an/3^n=1/2-(1/6)(1/3)^(n-1)
=1/2-(1/6)(1/3)^(n-1)
=1/2-(1/2)(1/3)^n
=[1-(1/3)^n]/2
=[1-3^(-n)]/2
即an=(3^n-1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询