已知函数f(x)=4x^2-4ax+(a^2-2a+2)在闭区间【0,2】上的最小值是3,求实数a的值。
展开全部
y=4x^2-4ax+(a^2-2a+2)=(2x-a)^2+(-2a+2),对称轴在x=a/2
(1).若0≤a≤4,x=a/2在区间[0,2]内,
y在[0,2] 上的最小值为y(a/2)=-2a+2=3,
a=-1/2(不合条件0≤a≤4,舍去);
(2).若a<0,x=a/2在区间[0,2]左边,
y在[0,2] 上的最小值为y(0)=a^2-2a+2=3,
a=1-√2,或a=1+√2(舍去);
(3).若a>4,x=a/2在区间[0,2]右边,
y在[0,2] 上的最小值为y(2)=a^2-10a+18=3,
a=5+√10,或a=5-√10(舍去)。
a=1-√2,或a=5+√10。
(1).若0≤a≤4,x=a/2在区间[0,2]内,
y在[0,2] 上的最小值为y(a/2)=-2a+2=3,
a=-1/2(不合条件0≤a≤4,舍去);
(2).若a<0,x=a/2在区间[0,2]左边,
y在[0,2] 上的最小值为y(0)=a^2-2a+2=3,
a=1-√2,或a=1+√2(舍去);
(3).若a>4,x=a/2在区间[0,2]右边,
y在[0,2] 上的最小值为y(2)=a^2-10a+18=3,
a=5+√10,或a=5-√10(舍去)。
a=1-√2,或a=5+√10。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询