已知函数f(x)=4x^2-4ax+(a^2-2a+2)在闭区间【0,2】上的最小值是3,求实数a的值。

 我来答
夜夜那么美
2012-05-01
知道答主
回答量:4
采纳率:0%
帮助的人:3.3万
展开全部
y=4x^2-4ax+(a^2-2a+2)=(2x-a)^2+(-2a+2),对称轴在x=a/2
(1).若0≤a≤4,x=a/2在区间[0,2]内,
y在[0,2] 上的最小值为y(a/2)=-2a+2=3,
a=-1/2(不合条件0≤a≤4,舍去);
(2).若a<0,x=a/2在区间[0,2]左边,
y在[0,2] 上的最小值为y(0)=a^2-2a+2=3,
a=1-√2,或a=1+√2(舍去);
(3).若a>4,x=a/2在区间[0,2]右边,
y在[0,2] 上的最小值为y(2)=a^2-10a+18=3,
a=5+√10,或a=5-√10(舍去)。
a=1-√2,或a=5+√10。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式