(tanx)^1/2的不定积分

 我来答
舒适还明净的海鸥i
2022-07-02 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.4万
展开全部
t=(tanx)^(1/2),dx=2tdt/(1+t^4)
原式=St*2tdt/(1+t^4)=2S(1+t^2)/(1+t^4) dt-2S1/(1+t^4)dt
=根2*arctan(t-1/t)-2ln|t| + (1/2)ln(t^4+1) + C
t=(tanx)^(1/2)代入化简即可.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式