已知数列an中,a1=1,a2=2,且a(n+1)=(1+q)an-qa(n-1)(n>=2,q不等与0 求数列an的通项公式
展开全部
因为bn=a(n+1)-an(n∈N*),
b1=a2-a1=1
bn=q^(n-1)
即a(n+1)-an=q^(n-1),(n∈N*)
an-a(n-1)=q^(n-2)
a(n-1)-a(n-2)=q^(n-3)
a(n-2)-a(n-3)=q^(n-4)
…
a2-a1=1
将上述式子相加得:an-a1=q^(n-2)+q^(n-3)+q^(n-4)+…+1
当q=1时,an=n,当an≠1时,
an-a1=[1-q^(n-1)]/(1-q)
an=a1+[1-q^(n-1)]/(1-q)
an=1+[1-q^(n-1)]/(1-q)
b1=a2-a1=1
bn=q^(n-1)
即a(n+1)-an=q^(n-1),(n∈N*)
an-a(n-1)=q^(n-2)
a(n-1)-a(n-2)=q^(n-3)
a(n-2)-a(n-3)=q^(n-4)
…
a2-a1=1
将上述式子相加得:an-a1=q^(n-2)+q^(n-3)+q^(n-4)+…+1
当q=1时,an=n,当an≠1时,
an-a1=[1-q^(n-1)]/(1-q)
an=a1+[1-q^(n-1)]/(1-q)
an=1+[1-q^(n-1)]/(1-q)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询