对坐标的曲面积分
1个回答
展开全部
对坐标的曲面积分如下:
无论是重积分,还是曲线积分或是曲面积分,最后都要化为定积分进行积分运算,因为我们只会定积分的运算,如二重积分化为累次积分,三重积分化为一次定积分和一次二重积分进行计算。下面我们主要看其中的一种就是对坐标的曲面积分的算法。
他的物理意义是曲面一侧的流量。这里面要注意的是这个曲面是有方向的,在具体的题中会出现外侧,内侧,上侧,下侧等有方向的词汇。
相对坐标在某些情况下,用户需要直接通过点与点之间的相对位移来绘制图形,而不想指定每个点的绝对坐标.为此,AutoCAD提供了使用相对坐标的办法.所谓相对坐标,就是某点与相对点的相对位移值,在AutoCAD中相对坐标用“@”标识.使用相对坐标时可以使用笛卡儿坐标,也可以使用极坐标,可根据具体情况而定.
对坐标的线积分的实际意义
这个积分涉及两个函数P和Q,就算P=Q=1,那么由于对坐标曲线积分的物理意义是力沿曲线做的功,而P和Q就分别是力F在x和y轴方向的分量,两个分量都等于1也没什么意义吧,充其量也就表示个“曲线在x和y轴投影长度的代数和”(还与方向有关),没什么实际意义。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询