如图,在平面直角坐标系中,正方形ABCD的边长为5,点A在y轴正半轴上,点B在x轴负半轴上,B(-1,0),C、

如图,在平面直角坐标系中,正方形ABCD的边长为5,点A在y轴正半轴上,点B在x轴负半轴上,B(-1,0),C、D两点在抛物线y=12x2+bx+c上.(1)求此抛物线的... 如图,在平面直角坐标系中,正方形ABCD的边长为5,点A在y轴正半轴上,点B在x轴负半轴上,B(-1,0),C、D两点在抛物线y=12x2+bx+c上.(1)求此抛物线的表达式;(2)正方形ABCD沿射线CB以每秒5个单位长度平移,1秒后停止,此时B点运动到B1点,试判断B1点是否在抛物线上,并说明理由;(3)正方形ABCD沿射线BC平移,得到正方形A2B2C2D2,A2点在x轴正半轴上,求正方形ABCD的平移距离. 展开
 我来答
小牌坯界1398
推荐于2016-11-12 · 超过59用户采纳过TA的回答
知道答主
回答量:110
采纳率:0%
帮助的人:111万
展开全部
解:(1)如图,过点C作CE⊥x轴于点E,过点D作DF⊥y轴于点F.
∵正方形ABCD中,AB=BC,∠ABC=∠AOB=90°,
即∠OBC+∠ABO=∠BAO+∠ABO=90°.
∴∠OBC=∠BAO.
在Rt△BCE和Rt△ABO中,
∵∠OBC=∠BAO,BC=AB,∠CEB=∠BOA=90°,
∴Rt△BCE≌Rt△ABO(AAS).
∴CE=BO,BE=AO.
∵B(-1,0),
∴BO=1.
∵AB=
5

∴在Rt△ABO中,由勾股定理,得AO=
AB2?BO2
=
5?1
=2.
∴CE=1,BE=2.
∴OE=BE-BO=1.
∴C(1,-1).
同理可得△ADF≌△ABO.
∴DF=AO=2,AF=BO=1.
∴OF=AO-AF=2-1=1.
∴D(2,1).
将C(1,-1)、D(2,1)分别代入y=
1
2
x2+bx+c中,
可得
?1=
1
2
×1+b+c
1=
1
2
×4+2b+c

解得
b=
1
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消