如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.(1)判断△OBC的形状,并证明你的结论
如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.(1)判断△OBC的形状,并证明你的结论;(2)求BC的长;(3)求⊙O的半径OF的长...
如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.(1)判断△OBC的形状,并证明你的结论;(2)求BC的长;(3)求⊙O的半径OF的长.
展开
展开全部
(1)答:△OBC是直角三角形.
证明:∵AB、BC、CD分别与⊙O相切于E、F、G,
∴∠OBE=∠OBF=
∠EBF,∠OCG=∠OCF=
∠GCF,
∵AB∥CD,
∴∠EBF+∠GCF=180°,
∴∠OBF+∠OCF=90°,
∴∠BOC=90°,
∴△OBC是直角三角形;
(2)解:∵在Rt△BOC中,BO=6,CO=8,
∴BC=
=10;
(3)解:∵AB、BC、CD分别与⊙O相切于E、F、G,
∴OF⊥BC,
∴OF=
=
=4.8.
证明:∵AB、BC、CD分别与⊙O相切于E、F、G,
∴∠OBE=∠OBF=
1 |
2 |
1 |
2 |
∵AB∥CD,
∴∠EBF+∠GCF=180°,
∴∠OBF+∠OCF=90°,
∴∠BOC=90°,
∴△OBC是直角三角形;
(2)解:∵在Rt△BOC中,BO=6,CO=8,
∴BC=
BO2+CO2 |
(3)解:∵AB、BC、CD分别与⊙O相切于E、F、G,
∴OF⊥BC,
∴OF=
BO?CO |
BC |
6×8 |
10 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询