已知数列{a n }的前n项和S n 满足: S n = a a-1 ( a n -1) (a为常数,且a≠0,a≠1)
已知数列{an}的前n项和Sn满足:Sn=aa-1(an-1)(a为常数,且a≠0,a≠1).(1)求{an}的通项公式;(2)设bn=2Snan+1,若数列{bn}为等...
已知数列{a n }的前n项和S n 满足: S n = a a-1 ( a n -1) (a为常数,且a≠0,a≠1).(1)求{a n }的通项公式;(2)设 b n = 2 S n a n +1 ,若数列{b n }为等比数列,求a的值;(3)在条件(2)下,设 c n =2-( 1 1+ a n + 1 1- a n+1 ) ,数列{c n }的前n项和为T n .求证: T n < 1 3 .
展开
(1)∵ S 1 = ( a 1 -1) (a为常数,且a≠0,a≠1), ∴当n≥2时, a n = S n - S n-1 = a n - a n-1 , 化简得 =a (a≠0), 又∵当n=1时,a 1 =s 1 =a,即{a n }是等比数列. ∴数列的通项公式a n =a?a n-1 =a n (2)由(1)知, b n = +1= , 因{b n }为等比数列,则有b 2 2 =b 1 b 3 ∵ b 1 =3, b 2 = , b 3 = , ∴ ( ) 2 =3? , 解得 a= ,再将 a= 代入得b n =3 n 成立, ∴ a= . (3)证明:由(2)知 a n =( ) n , ∴ c n =2- - =1- +1- = - , ∵ < , > ∴ - < - , ∴ c n < - ∴数列的前n和T n =c 1 +c 2 +…+c n <( - ) +( - ) +… + ( - ) = - < |
收起
为你推荐: