如图,在直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2(1
如图,在直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2(1)求证:C1E∥平面ADF;(2)...
如图,在直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2(1)求证:C1E∥平面ADF;(2)若点M在棱BB1上且BM=1,求证:平面ACM⊥平面ADF.
展开
1个回答
展开全部
解答:(1)证明:连接AD、CE并相交于O点,
连接OF,则OF为平面CEC1与平面ADF的相交线,
在△ABC中,D、E分别是BC、AB的中点
则O点为△ABC的重心,即 OC=2OE
=
,
又CC1=AA1=3,CF=2,
=
,
在△ECC1、△COF中,
=
,
∴OF∥C1E,
∵OF?平面ADF,C1E不包含于平面ADF,
∴C1E∥平面ADF.
(2)∵平面BCC1B1∩平面ADF=DF,
平面BCC1B1∩平面ACM=CM,
∵BC=CF=2,D是棱BC的中点,BM=1,
∠CBM=∠FCD=90°,
∴△CBM≌△FCD,∴∠BCM=∠CFD,
∴DF⊥CM,
∴平面ACM⊥平面ADF.
连接OF,则OF为平面CEC1与平面ADF的相交线,
在△ABC中,D、E分别是BC、AB的中点
则O点为△ABC的重心,即 OC=2OE
OC |
CE |
3 |
2 |
又CC1=AA1=3,CF=2,
CF |
CC1 |
2 |
3 |
在△ECC1、△COF中,
CF |
CC1 |
OC |
CE |
∴OF∥C1E,
∵OF?平面ADF,C1E不包含于平面ADF,
∴C1E∥平面ADF.
(2)∵平面BCC1B1∩平面ADF=DF,
平面BCC1B1∩平面ACM=CM,
∵BC=CF=2,D是棱BC的中点,BM=1,
∠CBM=∠FCD=90°,
∴△CBM≌△FCD,∴∠BCM=∠CFD,
∴DF⊥CM,
∴平面ACM⊥平面ADF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |