若x1x2是一元二次方程ax²+bx+c=0的两个实数根,求a(x1³+x2³)+b(x1²+x2²
1个回答
2015-09-19 · 知道合伙人教育行家
关注
展开全部
∵x1x2是一元二次方程ax²+bx+c=0的两个实数根
∴根据韦达定理:x1+x2=-b/a,x1x2=c/a
x1²+x2²=(x1+x2)²-2x1x2=b²/a²-2c/a=(b²-2ac)/a²
x1³+x2³=(x1+x2)(x1²+x2²-x1x2) = -b/a*{(b²-2ac)/a²-c/a} = -b{(b²-3ac)/a³
∴ a(x1³+x2³)+b(x1²+x2² )+c(x1+x2)
= -b{(b²-3ac)/a² + b(b²-2ac)/a² -bc/a
= {-b{(b²-3ac) + b(b²-2ac) -abc}/a²
= {-b³+3abc + b³-2abc -abc}/a²
= 0/a²
= 0
∴根据韦达定理:x1+x2=-b/a,x1x2=c/a
x1²+x2²=(x1+x2)²-2x1x2=b²/a²-2c/a=(b²-2ac)/a²
x1³+x2³=(x1+x2)(x1²+x2²-x1x2) = -b/a*{(b²-2ac)/a²-c/a} = -b{(b²-3ac)/a³
∴ a(x1³+x2³)+b(x1²+x2² )+c(x1+x2)
= -b{(b²-3ac)/a² + b(b²-2ac)/a² -bc/a
= {-b{(b²-3ac) + b(b²-2ac) -abc}/a²
= {-b³+3abc + b³-2abc -abc}/a²
= 0/a²
= 0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |