怎样求二次函数解析式

 我来答
教育小百科达人
推荐于2019-10-10 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:459万
展开全部

1、条件为已知抛物线过三个已知点,用一般式:Y=aX^2+bX+c , 分别代入成为一个三元一次方程组,解得a、bc的值,从而得到解析式。

2、已知顶点坐标及另外一点,用顶点式:Y=a(X-h)^2+K , 点坐标代入后,成为关于a的一元一次方程,得a的值,从而得到 解析式。

3、已知抛物线过三个点中,其中两点在X轴上,可用交点式(两根式):Y=a(X-X1)(X-X2) , 第三点坐标代入求a,得抛物线解析式。

扩展资料:

y=a(x-h)²+k(a≠0,a、h、k为常数)。顶点坐标为(h,k);对称轴为直线x=h;顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最值=k.有时题目会指出让你用配方法把一般式化成顶点式。

例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。

解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。

注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。

二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。

一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。(可巧记为:左同右异)

常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c)。

砍了十年柴
2017-10-01 · TA获得超过3347个赞
知道小有建树答主
回答量:670
采纳率:0%
帮助的人:643万
展开全部
就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式.

巧取交点式法

知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2

分别是抛物线与x轴两个交点的横坐标.已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便.

典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式.

例1已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式.

析解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1).解得a=2,∴抛物线的解析式为y=2(x+2)(x-1),

即y=2x2+2x-4. 典型例题二:告诉抛物线与x轴的两个交

点之间的距离和对称轴,可利用抛物线的对称性求解. 例2已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4

.求二次函数的解析式. 思路启迪在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0).此时,可使用二次函数的交点式,得出函数解析式.

顶点式的妙处

顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点.当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a.在此类问题中,常和对称轴,最大值或最小值结合起来命题.在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.

典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数

顶点式. 例3已知抛物线的顶点坐标为(-1,-2),且通过点(

1,10),求此二次函数的解析式. 析解∵顶点坐标为(-1,-2),

故设二次函数解析式为y=a(x+1)2-2 (a≠0).把点(1,10)代入上式,得10=a(1+1)2-2.∴a=3.∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1.典型例题二:如果a>0,那么当x= -b2a时,y有最小

值且y最小=4ac-b24a;如果a<0,那么,当x=-b2a时,y有最大值,且y最大=4ac-b24a.告诉最大值或最小值,实际上也是告诉了顶点坐标

,同样也可以求出顶点式. 例4 已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析

式. 析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,

-3),对称轴为直线x=4,抛物线开口向上. 由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0).

∴抛物线的顶点为(4,-3)且过点(1,0).故可设函数解析式为y=a(x-4)2-3.将(1,0)代入得0=a(1-4)2-3, 解得a=13.

∴y=13(x-4)2-3,即y=13x2-83x+73. 典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出.

例如(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.(此cc四dd题ee同ff学gg们hh自ii己jj尝kk试ll解[[出mm)

典型例题四:利用函数的顶点式,解图像的平移等问题非常方便.

例5把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______.

析解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114.∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7.

须掌握二次函数的三种表达形式:一般式y=ax2+bx+c,交点式y=a(x-x1)(x-x2),顶点式y=a(x-h)2+k.能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2019-12-11 · TA获得超过1万个赞
知道答主
回答量:11.8万
采纳率:10%
帮助的人:5618万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wzhq777
高粉答主

2017-09-30 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.1亿
展开全部
1、条件为已知抛物线过三个已知点,
用一般式:Y=aX^2+bX+c , 分别代入成为一个三元一次方程组,
解得a、bc的值,从而得到解析式,
2、已知顶点坐标及另外一点,
用顶点式:Y=a(X-h)^2+K , 点坐标代入后,
成为关于a的一元一次方程,得a的值,从而得到 解析式,
3、已知抛物线过三个点中,其中两点在X轴上,
可用交点式(两根式):Y=a(X-X1)(X-X2) , 第三点坐标代入求a,
得抛物线解析式。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式