函数值怎么求
展开全部
解,原式=sin2asin2β-(1/2cos(2a-2β)+1/2)
=1/2(sin2asin2β-cos2acos2β+1)
=1/2(1-cos(2a+2β))
=sin(a+β)^2
而tan(a+β)=2tan(a+β)/2/(1-tan((a+β)/2)^2)
=√2/(1-1/2)
=2√2
原式=sin(a+β)^2/(sin(a+β)^2+cos(a+β)^2)
=tan(a+β)^2/(tan(α+β)^2+1)
=8/9.
=1/2(sin2asin2β-cos2acos2β+1)
=1/2(1-cos(2a+2β))
=sin(a+β)^2
而tan(a+β)=2tan(a+β)/2/(1-tan((a+β)/2)^2)
=√2/(1-1/2)
=2√2
原式=sin(a+β)^2/(sin(a+β)^2+cos(a+β)^2)
=tan(a+β)^2/(tan(α+β)^2+1)
=8/9.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询