设函数f(x)=ax^2-2x,若x∈[0,3],求最小值g(a)的表达式。 求解。谢谢!
1个回答
展开全部
(1)a=0时,f(x)= -2x是减函数,x∈[0,3], 最小值g(a)=f(3)=-6.
(2)f(x)=ax²-2x=a(x-1/a)²-1/a.
a>0时,该二次函数开口向上,对称轴为x=1/a.
①1/a≤3(即a≥1/3)时,最小值g(a)=f(1/a)= -1/a.
②1/a>3(即0<a<1/3)时,最小值g(a)= f(3)=9a-6.
a<0时,该二次函数开口向下,对称轴为x=1/a<0.
此时函数在[0,3]上递减,最小值g(a)= f(3)=9a-6.
(2)f(x)=ax²-2x=a(x-1/a)²-1/a.
a>0时,该二次函数开口向上,对称轴为x=1/a.
①1/a≤3(即a≥1/3)时,最小值g(a)=f(1/a)= -1/a.
②1/a>3(即0<a<1/3)时,最小值g(a)= f(3)=9a-6.
a<0时,该二次函数开口向下,对称轴为x=1/a<0.
此时函数在[0,3]上递减,最小值g(a)= f(3)=9a-6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询