3个回答
展开全部
设f(x)=ax²+bx+c,
则 f(x)+g(x)=(a-1)x²+bx+c-3
因为是奇函数,所以有
f(-x)+g(-x)=(a-1)x²-bx+c-3=-(a-1)x²-bx-c+3
2(a-1)x²+2c-6=0
可看出 a=1, c=3是解,
函数的导数是 f'(x)=2x+b,
当2x≥b时, 函数为增函数,最小值应是
f(-1)=a-b+c=1-b+3=1, 可得 b=3, (x≥3/2)
当2x≤b时, 函数为减函数,最小值应是
f(2)=4a+2b+c=4+2b+3=1, 可得 b=-3, (x≤-3/2)
因为-1≤x≤2, 当x=-1时,2x≤-3不成立,故舍去函数为减函数的可能。
这样可确知b=3, f(x)=x²+3x+3
则 f(x)+g(x)=(a-1)x²+bx+c-3
因为是奇函数,所以有
f(-x)+g(-x)=(a-1)x²-bx+c-3=-(a-1)x²-bx-c+3
2(a-1)x²+2c-6=0
可看出 a=1, c=3是解,
函数的导数是 f'(x)=2x+b,
当2x≥b时, 函数为增函数,最小值应是
f(-1)=a-b+c=1-b+3=1, 可得 b=3, (x≥3/2)
当2x≤b时, 函数为减函数,最小值应是
f(2)=4a+2b+c=4+2b+3=1, 可得 b=-3, (x≤-3/2)
因为-1≤x≤2, 当x=-1时,2x≤-3不成立,故舍去函数为减函数的可能。
这样可确知b=3, f(x)=x²+3x+3
展开全部
f(x)=x^2+3x+3
设f(x)=ax^2+bx+c
f(x)+g(x)=(a-1)x2+bx+c-3
因为是奇函数,代入-x列出等式,解得a=1 c=3
然后讨论b的范围,当对称轴在区间时,求出b(舍去),当对称轴在区间右边时求出b(舍去),当对称轴在左边时,求出b。然后就能知道f(x)的解析式了
设f(x)=ax^2+bx+c
f(x)+g(x)=(a-1)x2+bx+c-3
因为是奇函数,代入-x列出等式,解得a=1 c=3
然后讨论b的范围,当对称轴在区间时,求出b(舍去),当对称轴在区间右边时求出b(舍去),当对称轴在左边时,求出b。然后就能知道f(x)的解析式了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设f(x)=ax^2+bx+c
由于f(x)+g(x)为奇函数
所以f(0)+g(0)=-{f(0)+g(0)}
所以f(0)+g(0)=0
化得:a*0^2+b*0+c-0^2-3=0
所以:c=3
有f(x)+g(x)为奇函数又可以推出:
对于任何的实数都有
f(x)+g(x)=-{f(-x)+g(-x)}
化得:-x^2-3+ax^2+bx+3=-{-x^2-3+ax^2-bx+3}
-x^2-3+ax^2+bx=x^2-3-ax^2+bx
所以(2-2*a)x^2=0
由于对任意的x属于R都成立
所以(2-2*a)=0
得:a=1
所以f(x)=x^2+bx+3
由于f(x)在[-1,2]存在最小值为1
二次函数的特征可以知道
要使得取得最小值
只有可能在对称轴上,或想x=-1或则x=2
假设在对称轴上
则有f(-b/(2a))=f(-b/2)=(b^2/4)-(b^2/2)+3=1
得:b^2=8
b=+2*根号2,-2*根号2
-b/2*a=根号2或者-根号2
由于(-根号2)不在xx属于[-1,2]下
所以不可能取得即b=+2*根号2不满足
假设是在x=-1取得
代入f(-1)=1-b+3=1
所以b=3
则对称轴位置为—(b/2a)=-3/2
此时x属于[-1,2]都在对称轴的右边
所以x属于[-1,2]在x=-1处取的最小值满足
所以b=3可行
假设在x=2处取的最小值
则f(2)=4+2b+3=1
所以b=-3
此时对称轴-(b/2a)=3/2
此时对称轴在x属于[-1,2]之内
所以最小值应该在对称轴位置取得
与假设矛盾舍去
综上所述
f(x)=-x^2-2根号2x+3
或者f(x)=-x^2+3x+3
由于f(x)+g(x)为奇函数
所以f(0)+g(0)=-{f(0)+g(0)}
所以f(0)+g(0)=0
化得:a*0^2+b*0+c-0^2-3=0
所以:c=3
有f(x)+g(x)为奇函数又可以推出:
对于任何的实数都有
f(x)+g(x)=-{f(-x)+g(-x)}
化得:-x^2-3+ax^2+bx+3=-{-x^2-3+ax^2-bx+3}
-x^2-3+ax^2+bx=x^2-3-ax^2+bx
所以(2-2*a)x^2=0
由于对任意的x属于R都成立
所以(2-2*a)=0
得:a=1
所以f(x)=x^2+bx+3
由于f(x)在[-1,2]存在最小值为1
二次函数的特征可以知道
要使得取得最小值
只有可能在对称轴上,或想x=-1或则x=2
假设在对称轴上
则有f(-b/(2a))=f(-b/2)=(b^2/4)-(b^2/2)+3=1
得:b^2=8
b=+2*根号2,-2*根号2
-b/2*a=根号2或者-根号2
由于(-根号2)不在xx属于[-1,2]下
所以不可能取得即b=+2*根号2不满足
假设是在x=-1取得
代入f(-1)=1-b+3=1
所以b=3
则对称轴位置为—(b/2a)=-3/2
此时x属于[-1,2]都在对称轴的右边
所以x属于[-1,2]在x=-1处取的最小值满足
所以b=3可行
假设在x=2处取的最小值
则f(2)=4+2b+3=1
所以b=-3
此时对称轴-(b/2a)=3/2
此时对称轴在x属于[-1,2]之内
所以最小值应该在对称轴位置取得
与假设矛盾舍去
综上所述
f(x)=-x^2-2根号2x+3
或者f(x)=-x^2+3x+3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询