怎样用Matlab求二元函数极小值?f(x,y)=100(y-x^2)^2+(1-x)^2
2个回答
展开全部
代码% By lyqmath。
clc; clear all; close all。
% f(x,y)=100(y-x^2)^2+(1-x)^2。
title('By lyqmath', 'FontWeight', 'Bold', 'Color', 'r')结果。
f(x, y) = 100*(y-x^2)^2+(1-x)^2 = 0。
因为平方是非负数,所以得出:
y-x^2 = 0。
1-x = 0。
即:x = 1,y = 1。
所以 ezplot('100*(y-x^2)^2+(1-x)^2') 实际上只画出了一个点。
必须注意
所谓二重极限存在,是指P(x,y)以任何方式趋于P0(x0,y0)时,f(x,y)都无限接近于A,因此,如果P(x,y)以某一特殊方式。
例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使f(x,y)无限接近于某一确定值,还不能由此断定函数的极限存在.但是反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,f(x,y)趋于不同的值,那么就可以断定这函数的极限不存在。
推荐于2018-04-12
展开全部
做个测试,希望有所帮助。代码% By lyqmath
clc; clear all; close all;
% f(x,y)=100(y-x^2)^2+(1-x)^2
fun = @(x) 100*(x(2)-x(1)^2)^2+(1-x(1))^2;
[x,fval,exitflag] = fminsearch(fun, [-1.2, 1], ...
optimset('TolX',1e-8))
figure; ezmesh('100*(y-x^2)^2+(1-x)^2'); hold on;
plot3(x(1), x(2), fval, 'ro', 'MarkerFaceColor', 'r');
title('By lyqmath', 'FontWeight', 'Bold', 'Color', 'r')结果
clc; clear all; close all;
% f(x,y)=100(y-x^2)^2+(1-x)^2
fun = @(x) 100*(x(2)-x(1)^2)^2+(1-x(1))^2;
[x,fval,exitflag] = fminsearch(fun, [-1.2, 1], ...
optimset('TolX',1e-8))
figure; ezmesh('100*(y-x^2)^2+(1-x)^2'); hold on;
plot3(x(1), x(2), fval, 'ro', 'MarkerFaceColor', 'r');
title('By lyqmath', 'FontWeight', 'Bold', 'Color', 'r')结果
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询