用二重积分计算由x+y+z=1和三个坐标平面所围成的四面体的体积
1个回答
展开全部
四面体的体积=∫dx∫(1-x-y)dy
=∫{[(1-x)y-y²/2]│}dx
=∫[(1-x)²/2]dx
=[(1/2)(-1/3)(1-x)³]│
=1/6
扩展资料
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询