设f(x)在(-∞,+∞)内有定义,证明:f(x)+f(-x)为偶函数,而f(x)-f(-x)为奇函数.
3个回答
展开全部
用手机不好打符号,用定义法。爱符负爱可司等于爱符爱可司就是偶爱符符爱可司等于符爱符爱可司为奇
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)令T(x)=f(x)+(-x).则T(-x)=f(-x)+f(x),因为定义域为R,所以T(-x)=T(x),所以此函数为偶函数(2)令B(x)=f(x)_f(-x),则B(-x)=f(-x)_f(x),因为定义域为R,所以B(x)=-B(x),所以此函数为奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询