定义在R上的函数f(x),对任意x属于R都有f(x)>0,f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,有f(a+b)=

定义在R上的函数f(x),对任意x属于R都有f(x)>0,f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,有f(a+b)=f(a)乘以f(b).。1、... 定义在R上的函数f(x),对任意x属于R都有f(x)>0,f(0)不等于0,当x>0时,f(x)>1,且对任意的a,b属于R,有f(a+b)=f(a)乘以f(b).。 1、求证f(0)=1 2、求证f(x)时R上的增函数。 3、若f(x)乘以f(2x-x^2)>1,求x的取值范围 展开
章彧
2010-10-07 · TA获得超过5.7万个赞
知道大有可为答主
回答量:3140
采纳率:100%
帮助的人:1464万
展开全部
1.因为f(a+b)=f(a)f(b),令式中a=b=0得:f(0)=f(0)*f(0),因f(0)不等于0,所以等式两同时消去f(0),得:f(0)=1。

2.设x1>x2,因为对任意的x属于R,恒有f(x)>0,所以f(x1)/f(x2)=f(x1+x2-x2)/f(x2)=(f(x1-x2)*f(x2))/f(x2),分子分母同时约去f(x2),得:f(x1)/f(x2)=f(x1-x2),因为x1>x2,所以x1-x2>0,所以f(x1-x2)>1,所以f(x1)/f(x2)>1,所以f(x1)>f(x2),所以f(x)是R上的增函数。
3.f(x)*f(2x-x平方)=f(3x-x^2)>1,因为x>0时,f(x)>1,f(x)又为R上的增函数,所以,只有当3x-x^2>0时,才会有f(x)*f(2x-x平方)>1,此时,0<x<3。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式