关于x的一元二次方程x2+(2k-3)x+k2有两个不相等的实数根a,b

关于x的一元二次方程x2+(2k-3)x+k2有两个不相等的实数根a,ba+b+ab=6,求(a-b)2+3ab-5的值... 关于x的一元二次方程x2+(2k-3)x+k2有两个不相等的实数根a,b
a+b+ab=6,求(a-b)2+3ab-5的值
展开
rowei113
2010-10-08 · TA获得超过2607个赞
知道小有建树答主
回答量:260
采纳率:0%
帮助的人:454万
展开全部
本题考查的是一元二次方程根的判别式,根与系数的关系(韦达定理)。
---------------------------------------------------------------
解:∵方程x^2+(2k-3)x+k^2=0有两个不相等的实数根
∴△>0,即:(2k-3)^2-4k^2>0.
解得:k< 3/4.
又 a+b=-(2k-3),ab=k^2, 条件 a+b+ab=6 可化为:
-(2k-3)+k^2=6,整理为:k^2-2k-3=0
∴k1=3(不合题意,舍去),k2=-1
∴k=-1.∴a+b=5,ab=1.
∴(a-b)^2+3ab-5=(a+b)^2-ab-5=19
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式