如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角

如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运... 如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F. (1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形? 展开
 我来答
俊俏且清正丶财宝8540
2014-10-05 · TA获得超过140个赞
知道答主
回答量:117
采纳率:0%
帮助的人:113万
展开全部
(1)证明见解析 (2) 矩形,证明见解析(3) 直角三角形

证明:(1)∵MN∥BC,∴∠FEC=∠BCE.
∵CE平分∠ACB,∴∠ECB=∠ACE,∴∠FEC=∠ACE,
∴OE=OC.同理可证OF=OC,∴OE=FO.
(2)当O运动到AC中点时,四边形AECF是矩形.
∵CE平分∠ACB,CF平分∠BCA的外角,
∴∠ECF=∠ECA+∠FCA= ×180°=90°.
由(1)得OE=OF,又∵O为AC的中点,∴AO=CO.
∴四边形AECF是平行四边形.又∵∠ECF=90°,
∴四边形AECF是矩形.
(3)当△ABC是直角三角形,即∠ACB=90°时,在(2)的条件下,四边形AECF是正方形
(1)由平行线的性质和角平分线的性质,推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通过等量代换即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可确定OC=OE,OC=OF,可得OE=OF;
(2)当O点运动到AC的中点时,四边形AECF为矩形,根据矩形的判定定理(对角线相等且互相平分的四边形为矩形),结合(1)所推出的结论,即可推出OA=OC=OE=OF,求出AC=EF后,即可确定四边形AECF为矩形;
(3)当△ABC是直角三角形时,四边形AECF是正方形,根据(2)所推出的结论,由AC⊥BC,MN∥BC,确定AC⊥EF,即可推出结论.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式