如图,已知ABCD-A1B1C1D1 是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1,(1)求证:E,B,F
如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1,(1)求证:E,B,F,D1四点共面;(2)求点B1到平面EB...
如图,已知ABCD-A1B1C1D1 是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1,(1)求证:E,B,F,D1四点共面;(2)求点B1到平面EBFD1的距离;(3)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求tanθ.
展开
1个回答
展开全部
(1)证明:如图:在DD1上取一点N使得DN=1,
连接CN,EN,则AE=DN=1.CF=ND1=2、
因为CF∥ND1,
所以四边形CFD1N是平行四边形,
所以D1F∥CN.
同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,
又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,
所以四边形CNEB是平行四边形,
所以CN∥BE,
所以D1F∥BE,
所以E,B,F,D1四点共面.
(2)设向量
=(x,y,z),并且与截面EBFD1垂直,所以
⊥
,
⊥
.
因为
=(?3,0,1),
=(0,?3,2),
所以
连接CN,EN,则AE=DN=1.CF=ND1=2、
因为CF∥ND1,
所以四边形CFD1N是平行四边形,
所以D1F∥CN.
同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,
又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,
所以四边形CNEB是平行四边形,
所以CN∥BE,
所以D1F∥BE,
所以E,B,F,D1四点共面.
(2)设向量
BP |
BP |
BE |
BP |
BF |
因为
BE |
BF |
所以
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|