2个回答
展开全部
1)关于直线x=2对称,
x=-b/2a=4m/2(m^2-2)=2,m1=-1,m2=2,
因为有最高点,所以m=-1,
把x=2代入y=x/2+1中,y=2,
把m=-1,(2,2)代入得n=-2
解析式:y=-x^2+4x-2
2)因为顶点在直线y=½x+1上移动到点M,设M(h,h/2+1),
因为抛物线的开口方向不变,a=-1,
设y=-(x-h)^2+h/2+1
=-x^2+2hx-h^2+h/2+1,
AB=√△=√(2h+4),
由S△ABM =8,
所以:(1/2)*[√(2h+4)]*(h/2+1)=8,
设√(2h+4)=t,
t^3=64,
t=4,
h=6,
解析式:y=-x^2+12x-32
x=-b/2a=4m/2(m^2-2)=2,m1=-1,m2=2,
因为有最高点,所以m=-1,
把x=2代入y=x/2+1中,y=2,
把m=-1,(2,2)代入得n=-2
解析式:y=-x^2+4x-2
2)因为顶点在直线y=½x+1上移动到点M,设M(h,h/2+1),
因为抛物线的开口方向不变,a=-1,
设y=-(x-h)^2+h/2+1
=-x^2+2hx-h^2+h/2+1,
AB=√△=√(2h+4),
由S△ABM =8,
所以:(1/2)*[√(2h+4)]*(h/2+1)=8,
设√(2h+4)=t,
t^3=64,
t=4,
h=6,
解析式:y=-x^2+12x-32
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询