圆锥曲线的定义

 我来答
内蒙古恒学教育
2022-11-10 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线。起源于2000多年前的古希腊数学家最先开始研究圆锥曲线。
圆锥曲线(二次曲线)的(不完整)统一定义:到平面内一定点的距离r与到定直线的距离d之比是常数e=r/d的点的轨迹叫做圆锥曲线。其中当e>1时为双曲线,当e=1时为抛物线,当0<e<1时为椭圆。
定点叫做该圆锥曲线的焦点,定直线叫做(该焦点相应的)准线,e叫做离心率。
祖地厚心热听1
2016-05-11 · TA获得超过104个赞
知道答主
回答量:173
采纳率:100%
帮助的人:60.4万
展开全部

用一个平面去截一个二次锥面,得到的交线就称为圆锥曲线(conic sections)。

通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。具体而言:
1) 当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2) 当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3) 当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。
4) 当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。
5) 当平面只与二次锥面一侧相交,且过圆锥顶点,结果为一点。
6) 当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。
7) 当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。 (严格来讲,这种观点下只能定义圆锥曲线的几种主要情形,因而不能算是圆锥曲线的定义。但因其使用广泛,并能引导出许多圆锥曲线中重要的几何概念和性质)。
给定一点P,一直线L以及一非负实常数e,则到P的距离与L距离之比为e的点的轨迹是圆锥曲线。
根据e的范围不同,曲线也各不相同。具体如下:
1) e=0,轨迹为圆(椭圆的特例);
2) e=1(即到P与到L距离相同),轨迹为抛物线 ;
3) 0<e<1,轨迹为椭圆;
4) e>1,轨迹为双曲线的一支。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
嗳楼遥冷1m
2019-01-28 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:762万
展开全部
圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0
1时为双曲线。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式