Fx在[0,1]上连续,在(0,1)内可导,且f0=0,f1=1/3,求证存在ε∈(0,1/2),
Fx在[0,1]上连续,在(0,1)内可导,且f0=0,f1=1/3,求证存在ε∈(0,1/2),n∈(1/2,1),使f'(ε)+f'(n)=ε^2+n^2...
Fx在[0,1]上连续,在(0,1)内可导,且f0=0,f1=1/3,求证存在ε∈(0,1/2),n∈(1/2,1),使f'(ε)+f'(n)=ε^2+n^2
展开
9个回答
展开全部
令:F(x)=x^2*f(x)
当x=0时,F(0)=0^2*f(0)=0
当x=1时,F(1)=1^2*f(1)=0
而且F(x)在[0,1]内连续,F(x)在(0,1)内可导
故根据Rolle中值定理得:
存在g∈(0,1),使得f'(g)=0
而f'(x)=2xf(x)+x^2*f'(x)
故有:2gf(g)+g^2*f'(g)=0且g∈(0,1)
即得:-2f(g)=g*f'(g)
故:f'(g)=-2f(g)/g
当x=0时,F(0)=0^2*f(0)=0
当x=1时,F(1)=1^2*f(1)=0
而且F(x)在[0,1]内连续,F(x)在(0,1)内可导
故根据Rolle中值定理得:
存在g∈(0,1),使得f'(g)=0
而f'(x)=2xf(x)+x^2*f'(x)
故有:2gf(g)+g^2*f'(g)=0且g∈(0,1)
即得:-2f(g)=g*f'(g)
故:f'(g)=-2f(g)/g
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这尼玛都是什么鬼哟?是我读书太早,还是说是你乱写的哟,这尼玛的怕是真的是天书
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一下载个作业帮就解决了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个不知道,建议看看书
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询