高中充分必要条件判断技巧

 我来答
爱静静爱图图

2020-10-06 · TA获得超过4815个赞
知道大有可为答主
回答量:1.8万
采纳率:89%
帮助的人:441万
展开全部
充分条件与必要条件的判断是各类考试常考查题型,是高考中的“座上客”,因此在复习中掌握常用的方法是十分必要的.下面结合例题,给大家介绍三种常用的判断方法.

一.定义法

利用定义判断:直接判断“若p,则q”“若q,则p”的真假.即设“若p,则q”为原命题,则有:① 原命题为真,逆命题为假时,则p是q的充分不必要条件;②原命题为假,逆命题为真时,p是q的必要不充分条件;③当原命题与逆命题都为真时,p是q的充要条件;④当原命题与逆命题都为假时,p是q的既不充分也不必要条件.

例1(2017届黑龙江虎林一中高三月考)“sinα=1/2”是“cos2α=1/2”的(  )

(A)充分不必要条件 (B)必要不充分条件

(C)充要条件 (D)既不充分也不必要条件

解析:若sinα=1/2,则cos2α=1-2sin2α=1-2×1/2=1/2,充分性成立;

反之,若cos2α=1/2,则有1-2sin2α=1/2,得sin2α=1/4,sinα=±1/2,必要性不成立.

因此,“sinα=1/2”是“cos2α=1/2”的充分不必要条件.

二.集合法

从集合的观点看,建立命题p,q相应的集合,p:A={x|p(x)成立},q:B={x|q(x)成立},则有:①若A?B,则p是q的充分条件或q是p的必要条件;②若A?B,则p是q的充分不必要条件,或q是p的必要不充分条件;③若A=B,则p是q的充要条件;④若A


B,且B

A,则p是q的既不充分也不必要条件.
例2(1)设x∈R,则“|x-2|<>”是“x2+x-2>0”的(  )

(A)充分不必要条件 (B)必要不充分条件

(C)充要条件 (D)既不充分也不必要条件

(2)(2017届贵州遵义市南白中学高三联考)“x>1”是“


”的(  )
(A)充要条件 (B)充分不必要条件

(C)必要不充分条件 (D)既不充分也不必要条件

解析:(1)由|x-2|<>,解得1x<>;由x2+x-2>0,解得x-2或x>1.

由于(1,3)


(-∞,-2)∪(1,+∞),
所以“|x-2|<>是“x2+x-2>0”的充分不必要条件.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式