2个回答
展开全部
证明:延长AE到F,使EF=AE
在△ABE与△FDE中,
∵BE=DE (∵AE是△ABD边BD上的中线)
∠AEB=∠DEF (对顶角)
EF=AE
∴△ABE≌△FDE (边,角,边)
∴∠EDF=∠ABE,DF=AB
在△ADF与△ACD中,
∵DF=AB=CD (∵AD是△ABC边BC上的中线,且BA=BD )
∠ADF=∠ADE+∠EDF
∠ADC= ∠B+ ∠BAD
∴∴ADC=∴ADF
AD=AD (公共边)
∴△ADF≌△ACD (边,角,边)
∴AC=AF=AE+EF=2AE (∵EF=AE)
故AC=2AE ,
在△ABE与△FDE中,
∵BE=DE (∵AE是△ABD边BD上的中线)
∠AEB=∠DEF (对顶角)
EF=AE
∴△ABE≌△FDE (边,角,边)
∴∠EDF=∠ABE,DF=AB
在△ADF与△ACD中,
∵DF=AB=CD (∵AD是△ABC边BC上的中线,且BA=BD )
∠ADF=∠ADE+∠EDF
∠ADC= ∠B+ ∠BAD
∴∴ADC=∴ADF
AD=AD (公共边)
∴△ADF≌△ACD (边,角,边)
∴AC=AF=AE+EF=2AE (∵EF=AE)
故AC=2AE ,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询