展开全部
∵CD=AC,∠DCA=60°,∴△CDA是正三角形
∵∠ACB=90°,DF‖BC,∴DF⊥CA
根据等腰三角形三线合一可知DF也是CA的中线,即F为CA的中点
∴点G为AB的中点,BG=AG=½AB,∴GF=½BC
又∵BC=½AB,∴BC=BG
在直角△BCE中,∠CBE=60°,∴BE=½BC=½BG ,∴BE=GE
∵CD⊥AB∴可得DB=DG
又∵∠BGD=60°,∴△BGD是正三角形
∴DF=DG+GF=1+0.5=1.5
∵∠ACB=90°,DF‖BC,∴DF⊥CA
根据等腰三角形三线合一可知DF也是CA的中线,即F为CA的中点
∴点G为AB的中点,BG=AG=½AB,∴GF=½BC
又∵BC=½AB,∴BC=BG
在直角△BCE中,∠CBE=60°,∴BE=½BC=½BG ,∴BE=GE
∵CD⊥AB∴可得DB=DG
又∵∠BGD=60°,∴△BGD是正三角形
∴DF=DG+GF=1+0.5=1.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考点:勾股定理;直角三角形全等的判定.
专题:计算题;证明题.
分析:(1)根据已知条件易证明Rt△AEC≌Rt△DFC,得CE=CF,则DE=AF,从而进一步证明Rt△AFG≌Rt△DEG,就可得到GE=GF;
(2)根据直角三角形的性质可以得到CE=½AC,CE=½CD,即AB是CE的垂直平分线,则BC=BD=1.再根据直角三角形的性质进一步求得AB、BE的长,则AE=AB-BE,结合(1)中的全等三角形,知DF=AE.
解答:(1)证明:∵DF∥BC,∠ACB=90°,
∴∠CFD=90°.
∵CD⊥AB,
∴∠AEC=90°.
在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,
∴Rt△AEC≌Rt△DFC.
∴CE=CF.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,
∴Rt△AFG≌Rt△DEG.
∴GF=GE.
(2)解:∵CD⊥AB,∠A=30°,
∴CE=½AC=½CD
∴CE=ED.
∴BC=BD=1.
又∠ECB=∠A=30°,∠CEB=90°,
∴BE=½BC=½BD=½
在直角三角形ABC中,∠A=30°,
则AB=2BC=2.
则AE=AB-BE=3/2
∵Rt△AEC≌Rt△DFC,
∴DF=AE=3/2
点评:此题综合运用了全等三角形的判定和性质、直角三角形的性质以及线段垂直平分线的性质;用到的知识点为:直角三角形中30°所对的直角边是斜边的一半.
专题:计算题;证明题.
分析:(1)根据已知条件易证明Rt△AEC≌Rt△DFC,得CE=CF,则DE=AF,从而进一步证明Rt△AFG≌Rt△DEG,就可得到GE=GF;
(2)根据直角三角形的性质可以得到CE=½AC,CE=½CD,即AB是CE的垂直平分线,则BC=BD=1.再根据直角三角形的性质进一步求得AB、BE的长,则AE=AB-BE,结合(1)中的全等三角形,知DF=AE.
解答:(1)证明:∵DF∥BC,∠ACB=90°,
∴∠CFD=90°.
∵CD⊥AB,
∴∠AEC=90°.
在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,
∴Rt△AEC≌Rt△DFC.
∴CE=CF.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,
∴Rt△AFG≌Rt△DEG.
∴GF=GE.
(2)解:∵CD⊥AB,∠A=30°,
∴CE=½AC=½CD
∴CE=ED.
∴BC=BD=1.
又∠ECB=∠A=30°,∠CEB=90°,
∴BE=½BC=½BD=½
在直角三角形ABC中,∠A=30°,
则AB=2BC=2.
则AE=AB-BE=3/2
∵Rt△AEC≌Rt△DFC,
∴DF=AE=3/2
点评:此题综合运用了全等三角形的判定和性质、直角三角形的性质以及线段垂直平分线的性质;用到的知识点为:直角三角形中30°所对的直角边是斜边的一半.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
【2】为1.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询