已知向量m=(sinx,√3sinx)向量n=(sinx,-cosx),设函数f(x)=m×n,若

已知向量m=(sinx,√3sinx)向量n=(sinx,-cosx),设函数f(x)=m×n,若函数g(x)的图像与f(x)的图像的图像关于原点对称(1)求函数g(x)... 已知向量m=(sinx,√3sinx)向量n=(sinx,-cosx),设函数f(x)=m×n,若函数g(x)的图像与f(x)的图像 的图像关于原点对称 (1)求函数g(x)在区间[-π/4,π/6]上的最大值。并求出此时x的值。 展开
 我来答
岭下人民
2014-03-15 · TA获得超过22.8万个赞
知道小有建树答主
回答量:3.5万
采纳率:97%
帮助的人:2232万
展开全部
f(x)=(sinx)^2-√3sinxcosx
=(1-cos2x)/2-√3/2sin2x
=-(√3/2sin2x+1/2cos2x)+1
=-sin(2x+π/6)+1
(1)当0≤x≤3π/2时,π/6≤2x+π/6≤19π/6
而y=-sinx在[2kπ-π/2,2kπ+π/2]上单调递减,在[2kπ+π/2,2kπ+3π/2]上单调递增
所以当2x+π/6∈[π/2,3π/2]∪[5π/2,19π/6]时,单调递增,此时对应x∈[π/6,2π/3]∪[7π/6,3π/2],
所以函数f(x)在[0,3π/2]上的单调递增区间为:[π/6,2π/3]∪[7π/6,3π/2]。
(2)f(A)+sin(2A-π/6)=-sin(2A+π/6)+1+sin(2A-π/6)=1
所以sin(2A+π/6)-sin(2A-π/6)=0,即2cos2Asin(π/6)=0
所以cos2A=0,而A∈(0,π/2),即2A∈(0,π)
所以2A=π/2,所以A=π/4
而S△ABC=1/2*bcsinA=1/2*bc*√2/2=√2/4*bc=2√3
所以bc=4√6,而b+c=7,所以b^2+c^2=(b+c)^2-2bc=49-8√6
所以a^2=b^2+c^2-2bccosA=49-8√6-2×4√6×√2/2=49-8√6-8√3
所以a=√(49-8√6-8√3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式