如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长
如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;...
如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.
展开
展开全部
(1)证明:∵四边形ABCD是平行四边形
∴AB∥CD且AB=CD,AD∥BC且AD=BC
E,F分别为AB,CD的中点,
∴BE=
AB,DF=
CD,
∴BE=DF,
∴四边形DEBF是平行四边形
在△ABD中,E是AB的中点,
∴AE=BE=
AB=AD,
而∠DAB=60°
∴△AED是等边三角形,即DE=AE=AD,
故DE=BE
∴平行四边形DEBF是菱形.
(2)解:四边形AGBD是矩形,理由如下:
∵AD∥BC且AG∥DB
∴四边形AGBD是平行四边形
由(1)的证明知AD=DE=AE=BE,
∴∠ADE=∠DEA=60°,
∠EDB=∠DBE=30°
故∠ADB=90°
∴平行四边形AGBD是矩形.
∴AB∥CD且AB=CD,AD∥BC且AD=BC
E,F分别为AB,CD的中点,
∴BE=
1 |
2 |
1 |
2 |
∴BE=DF,
∴四边形DEBF是平行四边形
在△ABD中,E是AB的中点,
∴AE=BE=
1 |
2 |
而∠DAB=60°
∴△AED是等边三角形,即DE=AE=AD,
故DE=BE
∴平行四边形DEBF是菱形.
(2)解:四边形AGBD是矩形,理由如下:
∵AD∥BC且AG∥DB
∴四边形AGBD是平行四边形
由(1)的证明知AD=DE=AE=BE,
∴∠ADE=∠DEA=60°,
∠EDB=∠DBE=30°
故∠ADB=90°
∴平行四边形AGBD是矩形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询