求直线被圆截得的弦长公式?
设圆半径为r,圆心为(m,n),直线方程为ax+by+c=0,弦心距为d,则d^2=(ma+nb+c)^2/(a^2+b^2 ),则弦长的一半的平方为(r^2-d^2)/2。
弦长抛物线公式:
1、y^2=2px,过焦点直线交抛物线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2。
2、y^2=-2px,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚。
3、 y^2=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2。
4、y^2=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2﹚。
扩展资料:
注意事项:
1、利用直角三角形勾股定理,先求得直径与径的距离OH。由于弦(假设交于圆CD)平行于半圆直径,过直径中点(O)作垂线交于弦(设交点为H),并连接直径中点O与弦一头A。
2、在弦与直径之间做平行于直径的弦,连接直径中点O与平行弦跟半圆的交点,得到的都是直角三角形(如ODH1,OEH2等等)。
3、如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长。
参考资料来源:百度百科-弦长公式
弦长=│x1-x2│√(k^2+1)
=│y1-y2│√[(1/k^2)+1]
证明方法如下:
假设直线为:Y=kx+b
圆的方程为:(x-a)^+(y-u)^2=r^2
假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2)
则有AB=√(x1-x2)^2+(y1-y2)^
把y1=kx1+b.
y2=kx2+b分别带入,
则有:
AB=√(x1-x2)^2+(kx1-kx2)^2
=√(x1-x2)^2+k^2(x1-x2)^2
=√1+k^2*│x1-x2│
证明ABy1-y2│√[(1/k^2)+1]
的方法也是一样的