双曲线x²-y²;=a²;的两个焦点F1,F2,P为双曲线上任意一点,求证:|PF1|,|P0|,|PF2|成等比数列

双曲线x²-y²;=a²;的两个焦点F1,F2,P为双曲线上任意一点,求证:|PF1|,|P0|,|PF2|成等比数列(o为坐标原点)... 双曲线x²-y²;=a²;的两个焦点F1,F2,P为双曲线上任意一点,求证:|PF1|,|P0|,|PF2|成等比数列(o为坐标原点) 展开
轻曳文絮
2010-10-24 · 超过12用户采纳过TA的回答
知道答主
回答量:39
采纳率:0%
帮助的人:31.8万
展开全部
设p坐标为(x,y)根据焦半径公式,PF1的长度为a+ex,PF2长度为ex-a,PO长度平方为x平方+y平方,那么PF1乘以PF2等于2乘以x^2-a^2,而x^2+y^2化简,可以用x^2的代数式来替换y^2,所得结果也是2乘以x^2-a^2,所以是成等比数列
注意:我这里的^代表指数,双曲线求点到焦点距离很多都可以用焦半径公式来解,同是要注意代换的思想
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式