∫x²/√1-x²×dx求解题过程
2019-10-11
展开全部
你给的题干不全,计算步骤参考下面的
答案是√2 - 2/√3
解题过程如下:
∫[1→√3] 1/[x²√(1+x²)] dx
令x=tanu,则√(1+x²)=secu,dx=sec²udu,u:π/4→π/3
=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du
=∫[π/4→π/3] secu/tan²u du
=∫[π/4→π/3] cosu/sin²u du
=∫[π/4→π/3] 1/sin²u dsinu
=-1/sinu ||[π/4→π/3]
=√2 - 2/√3
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式。
扩展资料
定理
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
答案是√2 - 2/√3
解题过程如下:
∫[1→√3] 1/[x²√(1+x²)] dx
令x=tanu,则√(1+x²)=secu,dx=sec²udu,u:π/4→π/3
=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du
=∫[π/4→π/3] secu/tan²u du
=∫[π/4→π/3] cosu/sin²u du
=∫[π/4→π/3] 1/sin²u dsinu
=-1/sinu ||[π/4→π/3]
=√2 - 2/√3
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式。
扩展资料
定理
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
佛山泰升塑胶公司科技
2024-11-18 广告
2024-11-18 广告
广东聚氨酯板材认准佛山市泰升塑胶科技有限公司,专业聚氨酯包胶厂家,获国家证书认证,按客户标准,欢迎来样定做.具有高回弹,高耐磨,耐酸碱,抗水解等特性,规格多,价格低,服务好。 佛山市泰升塑胶科技有限公司是研制、生产聚氨酯塑胶系列产品的专业企...
点击进入详情页
本回答由佛山泰升塑胶公司科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |