∫x^2/√1-x^6dx
1个回答
展开全部
令u=x³,du=3x²dx,dx=1/(3x²) du
∫x³/√(1-x^6) dx = ∫x²/√[1-(x³)²] dx
= (1/3)∫du/√(1-u²) ...*
= (1/3)arcsin(u) + C
= (1/3)arcsin(x³) + C
若不明白由*处到答案的过程,可设u=sinz,du=cosz dz
(1/3)∫du/√(1-u²)
= (1/3)∫cosz/√(1-sin²z) dz
= (1/3)∫cosz/√(cos²z) dz
= (1/3)∫cosz/cosz dz
= (1/3)z + C
= (1/3)arcsin(u) + C
= (1/3)arcsin(x³) + C
∫x³/√(1-x^6) dx = ∫x²/√[1-(x³)²] dx
= (1/3)∫du/√(1-u²) ...*
= (1/3)arcsin(u) + C
= (1/3)arcsin(x³) + C
若不明白由*处到答案的过程,可设u=sinz,du=cosz dz
(1/3)∫du/√(1-u²)
= (1/3)∫cosz/√(1-sin²z) dz
= (1/3)∫cosz/√(cos²z) dz
= (1/3)∫cosz/cosz dz
= (1/3)z + C
= (1/3)arcsin(u) + C
= (1/3)arcsin(x³) + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询