5个回答
展开全部
设 x→alim[f(x)-b]/(x-a)=k,则x→alim[sinf(x)-sinb]/(x-a)=?
解:∵x→a时分母x-a→0,而分式的极限存在,故必有f(a)-b=0,即f(a)=b;
∴x→alim[sinf(x)-sinb]=sinf(a)-sinb=sinb-sinb=0;
∴对所求极限可用洛必达法则求解:
x→alim[sinf(x)-sinb]/(x-a)=x→alim[cosf(x)]•f'(x)=[cosf(a)]f'(a)=(cosb)f'(a);
由x→alim[f(x)-b]/(x-a)=x→alim[f(x)-f(a)]/(x-a)=f'(a)=k,
∴x→alim[sinf(x)-sinb]/(x-a)=kcosb;
解:∵x→a时分母x-a→0,而分式的极限存在,故必有f(a)-b=0,即f(a)=b;
∴x→alim[sinf(x)-sinb]=sinf(a)-sinb=sinb-sinb=0;
∴对所求极限可用洛必达法则求解:
x→alim[sinf(x)-sinb]/(x-a)=x→alim[cosf(x)]•f'(x)=[cosf(a)]f'(a)=(cosb)f'(a);
由x→alim[f(x)-b]/(x-a)=x→alim[f(x)-f(a)]/(x-a)=f'(a)=k,
∴x→alim[sinf(x)-sinb]/(x-a)=kcosb;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询