为什么要进行因子分析?
1个回答
展开全部
问题一:因子分析后为什么要进行回归分析 用因子得分FAC1-1做回归,那个因子载荷阵是原变量与因子的相关系数,你可以参考网上的文献,另外新生成的因子是不相关的,不用做相关分析了
问题二:在因子分析中,为什么要对因子进行旋转 主成分分析不能旋转,因子分析才能。很多论文这个方面都误用了 统计专业,为您服务
问题三:为什么在做SPSS因子分析时要进行不止一次的因子的抽取 一次抽取过后,不合适的项目要删除。之后要再抽取,再删除项目。这样就多次了。
当然,如果数据、结构够好,一次也可以探索成良好结构
问题四:spss因子分析为什么要对因子进行旋转? 因子旋转是为了更有利于用现实语言来描述所得因子。正常因子分析得出的因子可能逻辑意义不明显,理解起来很困难。但旋转之后就可能得到有逻辑意义的因子。
问题五:进行因子分析的前提条件是各变量之间应该怎么做 本来想给你截图的,可是传不上来,我就简单说一下哈。
首先你得进行一次预计算,选择菜单里分析――降维――因子分析,跳出主面板,把想分析的变量选到变量框里,然后点确定。这时候输出窗口里会只有一个或两个图表。其中有一个图表是主成分的方差贡献。这个图表里你要找到两个相邻的列(应该是第三列和第四列),其中前一个列指的是单个因子对方差的贡献率,后一个是因子累计贡献率。也就是说前一个列里边数值相加等于100,后一个列里边数值递增,最后一个等于100。假如前一个列里是60,30,10,那么后一列里就是60,90,100.两个列之间有一个和的关系。找到这两个列以后,你要找使得累计贡献率达到百分之八十的那个数。这个表的第一列是1,2,3,等等,它代表第几个因子,比如3指的那行就包括第三个因子的方差贡献率,累积到第三个因子的方差贡献率这两个数据。你要找到累计到达百分之八十的那个因子是第几个因子,然后就按提取几个因子进行计算。
通过预计算知道了提取几个因子之后,就开始正式计算。再次打开因子分析的主面板,在最右边一共有五个选项,分别是描述,抽取,旋转,得分,选项。这五个在预计算里边没有用,但是现在要用了。点继续。
点击描述,在对话框里选上初始变量分析,kmo统计量及bartlett球形检验这两个选项,(注意,kmo和bartlett是一个选项,选项名就是很长)这一步是用来判断变量是否适于进行因子分析的。
点击抽取,对话框里最上边的方法就选主成分,分析里选上相关性矩阵,输出选上未旋转的因子解和碎石图两个选项,抽取里选择因子的固定数目,在要提取的因子后边填上你预计算里算出的因子数目。点继续。
旋转里边选最大方差法,输出旋转解。继续。
得分里边选保存为变量,方法为回归,显示因子得分系数矩阵也要打上勾。继续。
确定。
然后就可以分析结果了。
先看kmo和bartlett的结果,kmo统计量越接近1,变量相关性越强,因子分析效果越好。通常0.7以上为一般,0.5以下不能接受,就是不适合做因子分析。bartlett检验从检验相关矩阵出发,如果p值,就是sig,比较小的话,一般认为小于0.05,当然越小越好,就适于因子分析。
如果这两个检验都合格的话,才可以去写因子模型。
为了便于描述,假设我们有两个因子f1,f2,
旋转变换后的因子载荷矩阵会告诉你每个变量用因子表示的系数。比如变量x1=系数1*f1+系数2*f2,变量2以此类推。
因子得分系数矩阵会告诉你每个因子里各变量占得权重,比如f1=系数1*x1+系数2*x2+。。。
根据这个我们就能算出因子得分了。
因为之前选择了将因子保存为新变量,所以spss会直接保存两个因子得分为两个新变量,
然后我们不是有一个公式吗
总得分=因子1的方差贡献率*因子1的得分+因子2的方差贡献率*因子2的得分+...
根据这个公式计算一下就可以了。
用spss或者Excel都可以。
希望能对你有帮助哦。
ppv课,大数据培训专家,最专业的大数据培训平台。为你提供最好的spss学习教程哦。
问题六:因子分析后得到的几个成分做回归分析,为什么还要考虑多重共线性? 因为他不是用的因子得分,是线性计算的值
理论上用因子得分
问题七:请问 做相关分析前,一定要做因子分析吗?因子分析的目的是什么? 谢谢! 主成分分析和因子分析的区别 :jok:
1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成
个变量的线性组合。
2,主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之
间的协方差。
3,主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假
设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同
因子和特殊因子之间也不相关。
4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分
一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。
5,在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特
征值大于1的因子进入分析),而指
定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量
就有几个主成分。
和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有
优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于
使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个
新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主
成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。
总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前
,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分
析一般很少单独使用:a,了解数据。(screening the data),b,和cluster *** ysis一
起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可
能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回
归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性
。
在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的
对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的
问题八:用SPSS作因子分析,数据为什么要标准化 不标准化 可能会由于不同列的数据本身的大小差异影响结果
比如一列重量数据的范围可能都是几g,数据都是个位数,然后一列数据的计量单位是m,但实际值都是0.0001起的,因为主成份分析时,只考虑数据,未把计量单位考虑进去,这样两列数据的大小差异很大,会影响结果,因此对数据进行一定的标准化处理,使所有列的数据范围都在正负1之间,这样可以避免数据差异的影响
问题九:实证一定要进行因子分析吗 实证是相对于理论而言的,凡是涉及到数据和统计分析的,都可以叫实证,而因子分析只是众多统计分析方法中的一个而已,自然就不是必须的了。(南心网SPSS实证分析)
问题十:因子分析后为什么要进行回归分析 用因子得分FAC1-1做回归,那个因子载荷阵是原变量与因子的相关系数,你可以参考网上的文献,另外新生成的因子是不相关的,不用做相关分析了
问题二:在因子分析中,为什么要对因子进行旋转 主成分分析不能旋转,因子分析才能。很多论文这个方面都误用了 统计专业,为您服务
问题三:为什么在做SPSS因子分析时要进行不止一次的因子的抽取 一次抽取过后,不合适的项目要删除。之后要再抽取,再删除项目。这样就多次了。
当然,如果数据、结构够好,一次也可以探索成良好结构
问题四:spss因子分析为什么要对因子进行旋转? 因子旋转是为了更有利于用现实语言来描述所得因子。正常因子分析得出的因子可能逻辑意义不明显,理解起来很困难。但旋转之后就可能得到有逻辑意义的因子。
问题五:进行因子分析的前提条件是各变量之间应该怎么做 本来想给你截图的,可是传不上来,我就简单说一下哈。
首先你得进行一次预计算,选择菜单里分析――降维――因子分析,跳出主面板,把想分析的变量选到变量框里,然后点确定。这时候输出窗口里会只有一个或两个图表。其中有一个图表是主成分的方差贡献。这个图表里你要找到两个相邻的列(应该是第三列和第四列),其中前一个列指的是单个因子对方差的贡献率,后一个是因子累计贡献率。也就是说前一个列里边数值相加等于100,后一个列里边数值递增,最后一个等于100。假如前一个列里是60,30,10,那么后一列里就是60,90,100.两个列之间有一个和的关系。找到这两个列以后,你要找使得累计贡献率达到百分之八十的那个数。这个表的第一列是1,2,3,等等,它代表第几个因子,比如3指的那行就包括第三个因子的方差贡献率,累积到第三个因子的方差贡献率这两个数据。你要找到累计到达百分之八十的那个因子是第几个因子,然后就按提取几个因子进行计算。
通过预计算知道了提取几个因子之后,就开始正式计算。再次打开因子分析的主面板,在最右边一共有五个选项,分别是描述,抽取,旋转,得分,选项。这五个在预计算里边没有用,但是现在要用了。点继续。
点击描述,在对话框里选上初始变量分析,kmo统计量及bartlett球形检验这两个选项,(注意,kmo和bartlett是一个选项,选项名就是很长)这一步是用来判断变量是否适于进行因子分析的。
点击抽取,对话框里最上边的方法就选主成分,分析里选上相关性矩阵,输出选上未旋转的因子解和碎石图两个选项,抽取里选择因子的固定数目,在要提取的因子后边填上你预计算里算出的因子数目。点继续。
旋转里边选最大方差法,输出旋转解。继续。
得分里边选保存为变量,方法为回归,显示因子得分系数矩阵也要打上勾。继续。
确定。
然后就可以分析结果了。
先看kmo和bartlett的结果,kmo统计量越接近1,变量相关性越强,因子分析效果越好。通常0.7以上为一般,0.5以下不能接受,就是不适合做因子分析。bartlett检验从检验相关矩阵出发,如果p值,就是sig,比较小的话,一般认为小于0.05,当然越小越好,就适于因子分析。
如果这两个检验都合格的话,才可以去写因子模型。
为了便于描述,假设我们有两个因子f1,f2,
旋转变换后的因子载荷矩阵会告诉你每个变量用因子表示的系数。比如变量x1=系数1*f1+系数2*f2,变量2以此类推。
因子得分系数矩阵会告诉你每个因子里各变量占得权重,比如f1=系数1*x1+系数2*x2+。。。
根据这个我们就能算出因子得分了。
因为之前选择了将因子保存为新变量,所以spss会直接保存两个因子得分为两个新变量,
然后我们不是有一个公式吗
总得分=因子1的方差贡献率*因子1的得分+因子2的方差贡献率*因子2的得分+...
根据这个公式计算一下就可以了。
用spss或者Excel都可以。
希望能对你有帮助哦。
ppv课,大数据培训专家,最专业的大数据培训平台。为你提供最好的spss学习教程哦。
问题六:因子分析后得到的几个成分做回归分析,为什么还要考虑多重共线性? 因为他不是用的因子得分,是线性计算的值
理论上用因子得分
问题七:请问 做相关分析前,一定要做因子分析吗?因子分析的目的是什么? 谢谢! 主成分分析和因子分析的区别 :jok:
1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成
个变量的线性组合。
2,主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之
间的协方差。
3,主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假
设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同
因子和特殊因子之间也不相关。
4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分
一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。
5,在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特
征值大于1的因子进入分析),而指
定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量
就有几个主成分。
和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有
优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于
使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个
新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主
成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。
总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前
,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分
析一般很少单独使用:a,了解数据。(screening the data),b,和cluster *** ysis一
起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可
能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回
归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性
。
在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的
对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的
问题八:用SPSS作因子分析,数据为什么要标准化 不标准化 可能会由于不同列的数据本身的大小差异影响结果
比如一列重量数据的范围可能都是几g,数据都是个位数,然后一列数据的计量单位是m,但实际值都是0.0001起的,因为主成份分析时,只考虑数据,未把计量单位考虑进去,这样两列数据的大小差异很大,会影响结果,因此对数据进行一定的标准化处理,使所有列的数据范围都在正负1之间,这样可以避免数据差异的影响
问题九:实证一定要进行因子分析吗 实证是相对于理论而言的,凡是涉及到数据和统计分析的,都可以叫实证,而因子分析只是众多统计分析方法中的一个而已,自然就不是必须的了。(南心网SPSS实证分析)
问题十:因子分析后为什么要进行回归分析 用因子得分FAC1-1做回归,那个因子载荷阵是原变量与因子的相关系数,你可以参考网上的文献,另外新生成的因子是不相关的,不用做相关分析了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询