如图,在正方形ABCD中,E,F,G,H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什么
4个回答
展开全部
(1)证明:∵AB=BC=CD=DA,AE=BF=CG=DH,
∴EB=FC=GD=HA,
∵∠A=∠B=∠C=∠D=90°,
∴△AEH≌△BFE≌△CGF≌△DHG,(2分)
∴HE=EF=FG=GH,∠1=∠2,(3分)
∴四边形EFGH是菱形,(4分)
∵∠1+∠3=90°,
∴∠2+∠3=90°,
∴∠4=90°,
∴四边形EFGH是正方形;(5分)
∴EB=FC=GD=HA,
∵∠A=∠B=∠C=∠D=90°,
∴△AEH≌△BFE≌△CGF≌△DHG,(2分)
∴HE=EF=FG=GH,∠1=∠2,(3分)
∴四边形EFGH是菱形,(4分)
∵∠1+∠3=90°,
∴∠2+∠3=90°,
∴∠4=90°,
∴四边形EFGH是正方形;(5分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
EFGH也是正方形,证明四个角上的四个三角形全等(SAS)即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:四边形EFGH是正方形
理由如下:
∵在正方形ABCD中,AE=BF
∴……
理由如下:
∵在正方形ABCD中,AE=BF
∴……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |